×

A slow review of the AGT correspondence. (English) Zbl 1511.81111

Summary: Starting with a gentle approach to the Alday-Gaiotto-Tachikawa (AGT) correspondence from its 6d origin, these notes provide a wide (albeit shallow) survey of the literature on numerous extensions of the correspondence up to early 2020. This is an extended writeup of the lectures given at the Winter School ‘YRISW 2020’ to appear in a special issue of J. Phys. A, Math. Theor.. Class S is a wide class of 4d \(\mathcal{N} = 2\) supersymmetric gauge theories (ranging from super-QCD (quantum chromodynamics) to non-Lagrangian theories) obtained by twisted compactification of 6d \(\mathcal{N} = (2, 0)\) superconformal theories on a Riemann surface \(C\). This 6d construction yields the Coulomb branch and Seiberg-Witten geometry of class S theories, geometrizes S-duality, and leads to the AGT correspondence, which states that many observables of class S theories are equal to 2d conformal field theory (CFT) correlators. For instance, the four-sphere partition function of a 4d \(\mathcal{N} = 2\) superconformal quiver theory is equal to a Liouville CFT correlator of primary operators. Extensions of the AGT correspondence abound: asymptotically-free gauge theories and Argyres-Douglas theories correspond to irregular CFT operators, quivers with higher-rank gauge groups and non-Lagrangian tinkertoys such as \(T_N\) correspond to Toda CFT correlators, and nonlocal operators (Wilson-’t Hooft loops, surface operators, domain walls) correspond to Verlinde networks, degenerate primary operators, braiding and fusion kernels, and Riemann surfaces with boundaries.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Gaiotto, D., N = 2 dualities, J. High Energy Phys. (2012) · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[2] Argyres, P. C.; Douglas, M. R., New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B, 448, 93-126 (1995) · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-v
[3] Seiberg, N.; Witten, E.; Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B. Nucl. Phys. B, 430, 485-486 (1994) · Zbl 0996.81511 · doi:10.1016/0550-3213(94)90124-4
[4] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B, 431, 484-550 (1994) · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[5] Alday, L. F.; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197 (2010) · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[6] Tachikawa, Y., Six-dimensional D(N) theory and four-dimensional SO-USp quivers, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/07/067
[7] Benini, F.; Benvenuti, S.; Tachikawa, Y., Webs of five-branes and N = 2 superconformal field theories, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/09/052
[8] Gaiotto, D.; Moore, G. W.; Tachikawa, Y., On 6D \(####\) theory compactified on a Riemann surface with finite area, Prog. Theor. Exp. Phys., 2013 (2013) · Zbl 07406579 · doi:10.1093/ptep/pts047
[9] Anderson, M. T.; Beem, C.; Bobev, N.; Rastelli, L., Holographic uniformization, Commun. Math. Phys., 318, 429-471 (2013) · Zbl 1329.81299 · doi:10.1007/s00220-013-1675-4
[10] Pestun, V., Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys., 313, 71-129 (2012) · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[11] Hama, N.; Hosomichi, K.; Hama, N.; Hosomichi, K., Seiberg-Witten theories on ellipsoids. Seiberg-Witten theories on ellipsoids, J. High Energy Phys.. J. High Energy Phys. (2012) · Zbl 1397.81148 · doi:10.1007/JHEP10(2012)051
[12] Nekrasov, N. A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864 (2003) · Zbl 1056.81068 · doi:10.4310/atmp.2003.v7.n5.a4
[13] Nekrasov, N.; Okounkov, A., Seiberg-Witten theory and random partitions, Prog. Math., 244, 525-596 (2006) · Zbl 1233.14029 · doi:10.4310/ATMP.2003.v7.n5.a4
[14] Alba, V. A.; Fateev, V. A.; Litvinov, A. V.; Tarnopolskiy, G. M., On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys., 98, 33-64 (2011) · Zbl 1242.81119 · doi:10.1007/s11005-011-0503-z
[15] Teschner, J., Liouville theory revisited, Class. Quantum Grav., 18, R153-R222 (2001) · Zbl 1022.81047 · doi:10.1088/0264-9381/18/23/201
[16] Teschner, J., A lecture on the Liouville vertex operators (review), Int. J. Mod. Phys. A, 19, 436-458 (2004) · Zbl 1080.81060 · doi:10.1142/s0217751x04020567
[17] Teschner, J., Nonrational conformal field theory (2008)
[18] Córdova, C.; Jafferis, D. L., Toda theory from six dimensions, J. High Energy. Phys. (2017) · Zbl 1383.81286 · doi:10.1007/jhep12(2017)106
[19] Bonelli, G.; Tanzini, A., Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B, 691, 111-115 (2010) · doi:10.1016/j.physletb.2010.06.027
[20] Belavin, V.; Feigin, B., Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, J. High Energy Phys. (2011) · Zbl 1298.81154 · doi:10.1007/JHEP07(2011)079
[21] Kimura, T., Matrix model from N = 2 orbifold partition function, J. High Energy Phys. (2011) · Zbl 1301.81145 · doi:10.1007/JHEP09(2011)015
[22] Nishioka, T.; Tachikawa, Y., Central charges of para-Liouville and Toda theories from M-5-branes, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.046009
[23] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Instantons on ALE spaces and super Liouville conformal field theories, J. High Energy Phys. (2011) · Zbl 1298.81340 · doi:10.1007/jhep08(2011)056
[24] Belavin, A.; Belavin, V.; Bershtein, M., Instantons and 2D superconformal field theory, J. High Energy. Phys. (2011) · Zbl 1301.81102 · doi:10.1007/jhep09(2011)117
[25] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys., 101, 103-124 (2012) · Zbl 1262.81156 · doi:10.1007/s11005-012-0553-x
[26] Wyllard, N., Coset conformal blocks and N = 2 gauge theories (2011)
[27] Ito, Y., Ramond sector of super Liouville theory from instantons on an ALE space, Nucl. Phys. B, 861, 387-402 (2012) · Zbl 1246.81135 · doi:10.1016/j.nuclphysb.2012.04.001
[28] Alfimov, M. N.; Tarnopolsky, G. M., Parafermionic Liouville field theory and instantons on ALE spaces, J. High Energy Phys. (2012) · Zbl 1309.81141 · doi:10.1007/jhep02(2012)036
[29] Belavin, A. A.; Bershtein, M. A.; Feigin, B. L.; Litvinov, A. V.; Tarnopolsky, G. M., Instanton moduli spaces and bases in coset conformal field theory, Commun. Math. Phys., 319, 269-301 (2013) · Zbl 1263.81252 · doi:10.1007/s00220-012-1603-z
[30] Desrosiers, P.; Lapointe, L.; Mathieu, P., Superconformal field theory and Jack superpolynomials, J. High Energy Phys. (2012) · Zbl 1397.81299 · doi:10.1007/jhep09(2012)037
[31] Bonelli, G.; Maruyoshi, K.; Tanzini, A.; Yagi, F., N = 2 gauge theories on toric singularities, blow-up formulae and W-algebrae, J. High Energy Phys. (2013) · Zbl 1342.81263 · doi:10.1007/JHEP01(2013)014
[32] Belavin, A.; Mukhametzhanov, B., N = 1 superconformal blocks with Ramond fields from AGT correspondence, J. High Energy. Phys. (2013) · Zbl 1342.81478 · doi:10.1007/jhep01(2013)178
[33] Belavin, A. A.; Bershtein, M. A.; Tarnopolsky, G. M., Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity, J. High Energy Phys. (2013) · Zbl 1342.81173 · doi:10.1007/jhep03(2013)019
[34] Alfimov, M. N.; Belavin, A. A.; Tarnopolsky, G. M., Coset conformal field theory and instanton counting on C^2/Z_p, J. High Energy Phys. (2013) · doi:10.1007/jhep08(2013)134
[35] Itoyama, H.; Oota, T.; Yoshioka, R., 2D-4D connection between q-virasoro/W block at root of unity limit and instanton partition function on ALE space, Nucl. Phys. B, 877, 506-537 (2013) · Zbl 1284.81172 · doi:10.1016/j.nuclphysb.2013.10.012
[36] Spodyneiko, L., AGT correspondence: Ding-Iohara algebra at roots of unity and Lepowsky-Wilson construction, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1320.81083 · doi:10.1088/1751-8113/48/27/275404
[37] Itoyama, H.; Oota, T.; Yoshioka, R., Elliptic algebra, Frenkel-Kac construction and root of unity limit, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1375.81178 · doi:10.1088/1751-8121/aa8233
[38] Drukker, N.; Morrison, D. R.; Okuda, T., Loop operators and S-duality from curves on Riemann surfaces, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/09/031
[39] Alday, L. F.; Gaiotto, D.; Gukov, S.; Tachikawa, Y.; Verlinde, H., Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, J. High Energy Phys. (2010) · doi:10.1007/jhep01(2010)113
[40] Drukker, N.; Gomis, J.; Okuda, T.; Teschner, J., Gauge theory loop operators and Liouville theory, J. High Energy Phys. (2010) · Zbl 1270.81134 · doi:10.1007/jhep02(2010)057
[41] Wu, J-F; Zhou, Y., From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality (2009)
[42] Petkova, V. B., On the crossing relation in the presence of defects, J. High Energy Phys. (2010) · Zbl 1272.81177 · doi:10.1007/jhep04(2010)061
[43] Drukker, N.; Gaiotto, D.; Gomis, J., The virtue of defects in 4D gauge theories and 2D CFTs, J. High Energy Phys. (2011) · Zbl 1298.81170 · doi:10.1007/jhep06(2011)025
[44] Gaiotto, D., Open Verlinde line operators (2014)
[45] Passerini, F., Gauge theory Wilson loops and conformal Toda field theory, J. High Energy Phys. (2010) · Zbl 1271.81115 · doi:10.1007/jhep03(2010)125
[46] Gomis, J.; Le Floch, B., ’t Hooft operators in gauge theory from Toda CFT, J. High Energy Phys. (2011) · Zbl 1306.81235 · doi:10.1007/jhep11(2011)114
[47] Sarkissian, G., Some remarks on D-branes and defects in Liouville and Toda field theories, Int. J. Mod. Phys. A, 27, 1250181 (2012) · Zbl 1260.81216 · doi:10.1142/s0217751x12501813
[48] Saulina, N., A note on Wilson-’t Hooft operators, Nucl. Phys. B, 857, 153-171 (2012) · Zbl 1246.81150 · doi:10.1016/j.nuclphysb.2011.12.011
[49] Moraru, R.; Saulina, N., OPE of Wilson-’t Hooft operators in N = 4 and N = 2 SYM with gauge group G = PSU(3) (2012)
[50] Xie, D., Higher laminations, webs and N = 2 line operators (2013)
[51] Bullimore, M., Defect networks and supersymmetric loop operators, J. High Energy Phys. (2015) · doi:10.1007/jhep02(2015)066
[52] Tachikawa, Y.; Watanabe, N., On skein relations in class S theories, J. High Energy Phys. (2015) · Zbl 1388.81892 · doi:10.1007/jhep06(2015)186
[53] Watanabe, N., Wilson punctured network defects in 2D q-deformed Yang-Mills theory, J. High Energy Phys. (2016) · Zbl 1390.81356 · doi:10.1007/jhep12(2016)063
[54] Watanabe, N., Schur indices with class S line operators from networks and further skein relations (2017)
[55] Gaiotto, D., Surface operators in N = 2 4D gauge theories, J. High Energy Phys. (2012) · Zbl 1397.81363 · doi:10.1007/JHEP11(2012)090
[56] Kozcaz, C.; Pasquetti, S.; Wyllard, N., A & B model approaches to surface operators and Toda theories, J. High Energy Phys. (2010) · Zbl 1291.81328 · doi:10.1007/JHEP08(2010)042
[57] Maruyoshi, K.; Taki, M., Deformed prepotential, quantum integrable system and Liouville field theory, Nucl. Phys. B, 841, 388-425 (2010) · Zbl 1207.81076 · doi:10.1016/j.nuclphysb.2010.08.008
[58] Taki, M., Surface operator, bubbling Calabi-Yau and AGT relation, J. High Energy Phys. (2011) · Zbl 1298.81330 · doi:10.1007/jhep07(2011)047
[59] Awata, H.; Fuji, H.; Kanno, H.; Manabe, M.; Yamada, Y., Localization with a surface operator, irregular conformal blocks and open topological string, Adv. Theor. Math. Phys., 16, 725-804 (2012) · Zbl 1273.81178 · doi:10.4310/atmp.2012.v16.n3.a1
[60] Marshakov, A.; Mironov, A.; Morozov, A., On AGT relations with surface operator insertion and a stationary limit of beta-ensembles, J. Geom. Phys., 61, 1203-1222 (2011) · Zbl 1215.81092 · doi:10.1016/j.geomphys.2011.01.012
[61] Bonelli, G.; Tanzini, A.; Zhao, J., Vertices, vortices & interacting surface operators, J. High Energy Phys. (2012) · Zbl 1397.81136 · doi:10.1007/jhep06(2012)178
[62] Bonelli, G.; Tanzini, A.; Zhao, J., The Liouville side of the vortex, J. High Energy Phys. (2011) · Zbl 1301.81189 · doi:10.1007/jhep09(2011)096
[63] Zhao, J., Orbifold vortex and super Liouville theory (2011)
[64] Nieri, F.; Pasquetti, S.; Passerini, F., 3D and 5D gauge theory partition functions as q-deformed CFT correlators, Lett. Math. Phys., 105, 109-148 (2015) · Zbl 1305.81112 · doi:10.1007/s11005-014-0727-9
[65] Alday, L. F.; Bullimore, M.; Fluder, M.; Hollands, L., Surface defects, the superconformal index and q-deformed Yang-Mills, J. High Energy Phys. (2013) · Zbl 1342.81537 · doi:10.1007/jhep10(2013)018
[66] Fucito, F.; Morales, J. F.; Poghossian, R.; Pacifici, D. R., Exact results in \(####\) gauge theories, J. High Energy Phys. (2013) · doi:10.1007/jhep10(2013)178
[67] Aganagic, M.; Haouzi, N.; Shakirov, S., An-triality (2014)
[68] Gomis, J.; Le Floch, B., M2-brane surface operators and gauge theory dualities in Toda, J. High Energy Phys. (2016) · Zbl 1388.81320 · doi:10.1007/jhep04(2016)183
[69] Gomis, J.; Le Floch, B.; Pan, Y.; Peelaers, W., Intersecting surface defects and two-dimensional CFT, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.045003
[70] Jeong, S.; Zhang, X., BPZ equations for higher degenerate fields and non-perturbative Dyson-Schwinger equations (2017)
[71] Nekrasov, N., BPS/CFT correspondence V: BPZ and KZ equations from qq-characters (2017)
[72] Alday, L. F.; Tachikawa, Y., Affine SL(2) conformal blocks from 4D gauge theories, Lett. Math. Phys., 94, 87-114 (2010) · Zbl 1198.81162 · doi:10.1007/s11005-010-0422-4
[73] Kozcaz, C.; Pasquetti, S.; Passerini, F.; Wyllard, N., Affine sl(N) conformal blocks from N = 2 SU(N) gauge theories, J. High Energy Phys. (2011) · Zbl 1214.81157 · doi:10.1007/JHEP01(2011)045
[74] Wyllard, N., -algebras and surface operators in \(####\) gauge theories, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1213.81173 · doi:10.1088/1751-8113/44/15/155401
[75] Wyllard, N., Instanton partition functions in \(####\) SU(N) gauge theories with a general surface operator, and their \(####\)-algebra duals, J. High Energy Phys. (2011) · doi:10.1007/jhep02(2011)114
[76] Tachikawa, Y., On W-algebras and the symmetries of defects of 6D N = (2, 0) theory, J. High Energy Phys. (2011) · Zbl 1301.81155 · doi:10.1007/JHEP03(2011)043
[77] Kanno, H.; Tachikawa, Y., Instanton counting with a surface operator and the chain-saw quiver, J. High Energy Phys. (2011) · Zbl 1298.81306 · doi:10.1007/jhep06(2011)119
[78] Kanno, H.; Taki, M., Generalized Whittaker states for instanton counting with fundamental hypermultiplets, J. High Energy Phys. (2012) · Zbl 1348.81423 · doi:10.1007/jhep05(2012)052
[79] Belavin, V.; Wyllard, N., superconformal blocks and instanton partition functions, J. High Energy Phys. (2012) · doi:10.1007/jhep06(2012)173
[80] Belavin, V., Conformal blocks of chiral fields in \(####\) SUSY CFT and affine Laumon spaces, J. High Energy Phys. (2012) · doi:10.1007/jhep10(2012)156
[81] Babaro, J. P.; Giribet, G., On the description of surface operators in \(####\)* SYM, Mod. Phys. Lett. A, 28, 1330003 (2013) · Zbl 1259.81079 · doi:10.1142/s0217732313300036
[82] Pedrini, M.; Sala, F.; Szabo, R. J., AGT relations for abelian quiver gauge theories on ALE spaces, J. Geom. Phys., 103, 43-89 (2016) · Zbl 1332.14022 · doi:10.1016/j.geomphys.2016.01.004
[83] Nawata, S., Givental J-functions, quantum integrable systems, AGT relation with surface operator, Adv. Theor. Math. Phys., 19, 1277-1338 (2015) · Zbl 1342.81313 · doi:10.4310/atmp.2015.v19.n6.a4
[84] Creutzig, T.; Hikida, Y.; Rønne, P. B., Correspondences between WZNW models and CFTs with W-algebra symmetry, J. High Energy Phys. (2016) · Zbl 1388.81179 · doi:10.1007/jhep02(2016)048
[85] Yoshioka, R., The integral representation of solutions of KZ equation and a modification by \(####\) operator insertion (2015)
[86] Hosomichi, K.; Lee, S.; Park, J., AGT on the S-duality wall, J. High Energy Phys. (2010) · Zbl 1294.81113 · doi:10.1007/jhep12(2010)079
[87] Terashima, Y.; Yamazaki, M., Chern-Simons, Liouville, and gauge theory on duality walls, J. High Energy Phys. (2011) · doi:10.1007/jhep08(2011)135
[88] Teschner, J.; Vartanov, G., 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories, Lett. Math. Phys., 104, 527-551 (2014) · Zbl 1296.81038 · doi:10.1007/s11005-014-0684-3
[89] Dimofte, T.; Gaiotto, D.; van der Veen, R., RG domain walls and hybrid triangulations, Adv. Theor. Math. Phys., 19, 137-276 (2015) · Zbl 1315.81073 · doi:10.4310/atmp.2015.v19.n1.a2
[90] Le Floch, B., S-duality wall of SQCD from Toda braiding, J. High Energy Phys. (2020) · Zbl 1456.81438 · doi:10.1007/jhep10(2020)152
[91] Le Floch, B.; Turiaci, G. J., AGT/\(####\), J. High Energy Phys. (2017) · Zbl 1383.81303 · doi:10.1007/JHEP12(2017)099
[92] Bawane, A.; Benvenuti, S.; Bonelli, G.; Muteeb, N.; Tanzini, A., gauge theories on unoriented/open four-manifolds and their AGT counterparts, J. High Energy Phys. (2019) · Zbl 1418.81059 · doi:10.1007/JHEP07(2019)040
[93] Wyllard, N., A_N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/11/002
[94] Gaiotto, D., Asymptotically free \(####\) theories and irregular conformal blocks, J. Phys.: Conf. Ser., 462 (2013) · doi:10.1088/1742-6596/462/1/012014
[95] Chacaltana, O.; Distler, J., Tinkertoys for Gaiotto duality, J. High Energy Phys. (2010) · Zbl 1294.81177 · doi:10.1007/jhep11(2010)099
[96] Hollands, L.; Keller, C. A.; Song, J., From SO/Sp instantons to W-algebra blocks, J. High Energy Phys. (2011) · Zbl 1301.81137 · doi:10.1007/jhep03(2011)053
[97] Chacaltana, O.; Distler, J., Tinkertoys for the D_N series, J. High Energy Phys. (2013) · Zbl 1342.81566 · doi:10.1007/jhep02(2013)110
[98] Hollands, L.; Keller, C. A.; Song, J., Towards a 4D/2D correspondence for Sicilian quivers, J. High Energy Phys. (2011) · Zbl 1303.81166 · doi:10.1007/jhep10(2011)100
[99] Keller, C. A.; Mekareeya, N.; Song, J.; Tachikawa, Y., The ABCDEFG of instantons and W-algebras, J. High Energy Phys. (2012) · Zbl 1309.81165 · doi:10.1007/jhep03(2012)045
[100] Chacaltana, O.; Distler, J.; Tachikawa, Y., Nilpotent orbits and codimension-2 defects of 6D \(####\) theories, Int. J. Mod. Phys. A, 28, 1340006 (2013) · Zbl 1259.81030 · doi:10.1142/s0217751x1340006x
[101] Chacaltana, O.; Distler, J.; Tachikawa, Y., Gaiotto duality for the twisted A_2N−1 series, J. High Energy Phys. (2015) · Zbl 1388.81141 · doi:10.1007/JHEP05(2015)075
[102] Chacaltana, O.; Distler, J.; Trimm, A., Tinkertoys for the twisted D-series, J. High Energy Phys. (2015) · Zbl 1388.81504 · doi:10.1007/jhep04(2015)173
[103] Chacaltana, O.; Distler, J.; Trimm, A., Tinkertoys for the E_6 theory, J. High Energy Phys. (2015) · Zbl 1388.81645 · doi:10.1007/JHEP09(2015)007
[104] Chacaltana, O.; Distler, J.; Trimm, A., A family of 4D \(####\) interacting SCFTs from the twisted A_2N series (2014)
[105] Chacaltana, O.; Distler, J.; Trimm, A., Tinkertoys for the twisted E_6 theory (2015)
[106] Chacaltana, O.; Distler, J.; Trimm, A., Tinkertoys for the Z_3-twisted D_4 theory (2016)
[107] Chacaltana, O.; Distler, J.; Trimm, A.; Zhu, Y., Tinkertoys for the E_7 theory, J. High Energy Phys. (2018) · Zbl 1391.83104 · doi:10.1007/jhep05(2018)031
[108] Distler, J.; Ergun, B.; Yan, F., Product SCFTs in class-S, J. High Energy Phys. (2021) · Zbl 1460.81099 · doi:10.1007/jhep02(2021)164
[109] Chacaltana, O.; Distler, J.; Trimm, A.; Zhu, Y., Tinkertoys for the E_8 theory (2018)
[110] Gadde, A.; Rastelli, L.; Razamat, S. S.; Yan, W., Four dimensional superconformal index from q-deformed two dimensional Yang-Mills theory, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.241602
[111] Dimofte, T.; Gaiotto, D.; Gukov, S., Gauge theories labelled by three-manifolds, Commun. Math. Phys., 325, 367-419 (2014) · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[112] Gadde, A.; Gukov, S.; Putrov, P.; Ballmann, W.; Blohmann, C.; Faltings, G.; Teichner, P.; Zagier, D., Fivebranes and Four-Manifolds, 155-245 (2016), Switzerland: Springer, Switzerland
[113] Awata, H.; Yamada, Y., Five-dimensional AGT conjecture and the deformed virasoro algebra, J. High Energy Phys. (2010) · Zbl 1269.81157 · doi:10.1007/jhep01(2010)125
[114] Nieri, F.; Pan, Y.; Zabzine, M., q-Virasoro modular triple, Commun. Math. Phys., 366, 397-422 (2019) · Zbl 1410.81031 · doi:10.1007/s00220-019-03371-1
[115] Tachikawa, Y., N = 2 supersymmetric dynamics for pedestrians (2013)
[116] Tachikawa, Y.; Teschner, J., A review on instanton counting and W-algebras, New Dualities of Supersymmetric Gauge Theories, 79-120 (2016) · Zbl 1334.81073
[117] Tachikawa, Y., A review of the T_N theory and its cousins, Prog. Theor. Exp. Phys., 2015 (2015) · doi:10.1093/ptep/ptv098
[118] Tachikawa, Y., A brief review of the 2D/4D correspondences, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.81110 · doi:10.1088/1751-8121/aa5Df8
[119] Heckman, J. J.; Rudelius, T., Top down approach to 6D SCFTs, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1505.81069 · doi:10.1088/1751-8121/aafc81
[120] Balasubramanian, A. K., Four dimensional N = 2 theories from six dimensions, PhD Thesis (2014)
[121] Bilal, A., Duality in N = 2 SUSY SU(2) Yang-Mills theory: a pedagogical introduction, NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, 21-43 (1997) · Zbl 0924.53044
[122] Argyres, P. C., Non-perturbative dynamics of four-dimensional supersymmetric field theories, Conformal Field Theory: New Non-Perturbative Methods in String and Field Theory (2000)
[123] Martone, M., The constraining power of Coulomb branch geometry: lectures on Seiberg-Witten theory (2020)
[124] Teschner, J.; Teschner, J., Exact results on \(####\) supersymmetric gauge theories, New Dualities of Supersymmetric Gauge Theories, 1-30 (2016) · Zbl 1334.81074
[125] Pestun, V., Localization techniques in quantum field theories, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1378.00123 · doi:10.1088/1751-8121/aa63c1
[126] Hosomichi, K., SUSY gauge theories on S_4, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.81106 · doi:10.1088/1751-8121/aa7775
[127] Song, J., 4D/2D correspondence: instantons and \(####\)-algebras, PhD Thesis (2012)
[128] Ribault, S., Conformal field theory on the plane (2014)
[129] Ribault, S., Minimal lectures on two-dimensional conformal field theory, SciPost Phys. Lect. Notes, 1, 1 (2018) · doi:10.21468/scipostphyslectnotes.1
[130] Harlow, D.; Maltz, J.; Witten, E., Analytic continuation of Liouville theory, J. High Energy Phys. (2011) · Zbl 1306.81287 · doi:10.1007/jhep12(2011)071
[131] Bouwknegt, P.; Schoutens, K., W symmetry in conformal field theory, Phys. Rep., 223, 183-276 (1993) · doi:10.1016/0370-1573(93)90111-p
[132] de Boer, J.; Tjin, T., The relation between quantum W algebras and Lie algebras, Commun. Math. Phys., 160, 317-332 (1994) · Zbl 0796.17027 · doi:10.1007/bf02103279
[133] Bouwknegt, P.; Schoutens, K., W-Symmetry, 1-875 (1994), Singapore: World Scientific, Singapore
[134] Procházka, T., Exploring \(####\) in the quadratic basis, J. High Energy Phys. (2015) · doi:10.1007/jhep09(2015)116
[135] Eberhardt, L.; Procházka, T., The matrix-extended \(####\) algebra, J. High Energy Phys. (2019) · doi:10.1007/jhep12(2019)175
[136] Fateev, V. A.; Litvinov, A. V., Correlation functions in conformal Toda field theory: I, J. High Energy Phys. (2007) · Zbl 1245.81237 · doi:10.1088/1126-6708/2007/11/002
[137] Le Floch, B., AGT correspondence for surface operators, PhD Thesis (2015)
[138] Tachikawa, Y., A strange relationship between 2D CFT and 4D gauge theory (2011)
[139] Giacomelli, S., Confinement and duality in supersymmetric gauge theories, PhD Thesis (2013)
[140] Maruyoshi, K.; Teschner, J., β-deformed matrix models and 2D/4D correspondence, New Dualities of Supersymmetric Gauge Theories, 121-157 (2016) · Zbl 1334.81063
[141] Itoyama, H.; Yoshioka, R., Developments of theory of effective prepotential from extended Seiberg-Witten system and matrix models, Prog. Theor. Exp. Phys., 2015 (2015) · Zbl 1348.81292 · doi:10.1093/ptep/ptv124
[142] Kidwai, O.; Matte-Gregory, C.; Pym, B.; Safronov, P.; Emily, C.; Oren, B-B; Safronov, P., AGT Correspondence Seminar (2015)
[143] Tachikawa, Y., A pseudo-mathematical pseudo-review on 4D \(####\) supersymmetric quantum field theories. Lectures at IPMU, RIMS and Komaba (2013)
[144] Tachikawa, Y., On ‘categories’ of quantum field theories, 2695-2718 (2018)
[145] Moore, G. W., Lecture notes for felix Klein lectures (2012)
[146] Moore, G. W.; Tachikawa, Y.; Block, J.; Distler, J.; Donagi, R.; Sharpe, E., On 2D TQFT’s whose values are holomorphic symplectic varieties, vol 85, 191-297 (2012)
[147] Teschner, J., Quantization of moduli spaces of flat connections and Liouville theory (2014)
[148] Szabo, R. J., N = 2 gauge theories, instanton moduli spaces and geometric representation theory, J. Geom. Phys., 109, 83-121 (2016) · Zbl 1348.81328 · doi:10.1016/j.geomphys.2015.09.005
[149] Ben-Zvi, D.; Costello, K.; Dimofte, T.; Neitzke, A.; Yuan, Q., Mathematical aspects of six-dimensional quantum field theories (2014)
[150] Dimofte, T., Perturbative and nonperturbative aspects of complex Chern-Simons theory, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1386.81121 · doi:10.1088/1751-8121/aa6a5b
[151] Pasquetti, S., Holomorphic blocks and the 5D AGT correspondence, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.81098 · doi:10.1088/1751-8121/aa60fe
[152] Córdova, C.; Dumitrescu, T. T.; Yin, X., Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories, J. High Energy Phys. (2019) · Zbl 1427.81121 · doi:10.1007/jhep10(2019)128
[153] Freed, D. S.; Teleman, C., Relative quantum field theory, Commun. Math. Phys., 326, 459-476 (2014) · Zbl 1285.81057 · doi:10.1007/s00220-013-1880-1
[154] Nahm, W., Supersymmetries and their representations, Nucl. Phys. B, 135, 149 (1978) · Zbl 1156.81464 · doi:10.1016/0550-3213(78)90218-3
[155] Córdova, C.; Dumitrescu, T. T.; Intriligator, K., Multiplets of superconformal symmetry in diverse dimensions, J. High Energy Phys. (2019) · Zbl 1414.81233 · doi:10.1007/jhep03(2019)163
[156] Duff, M. J.; Lu, J. X., Black and super p-branes in diverse dimensions, Nucl. Phys. B, 416, 301-334 (1994) · Zbl 1007.81530 · doi:10.1016/0550-3213(94)90586-x
[157] Witten, E., Some comments on string dynamics, STRINGS 95: Future Perspectives in String Theory, 501-523 (1995)
[158] Strominger, A., Open p-branes, Phys. Lett. B, 383, 44-47 (1996) · Zbl 0903.53053 · doi:10.1016/0370-2693(96)00712-5
[159] Henningson, M., Self-dual strings in six dimensions: anomalies, the ADE-classification, and the world-sheet WZW-model, Commun. Math. Phys., 257, 291-302 (2005) · Zbl 1079.81053 · doi:10.1007/s00220-005-1324-7
[160] Aharony, O., A brief review of ‘little string theories’, Class. Quantum Grav., 17, 929-938 (2000) · Zbl 0952.81040 · doi:10.1088/0264-9381/17/5/302
[161] Di Vecchia, P.; Liccardo, A., Gauge theories from D-branes, Les Houches School of Physics: Frontiers in Number Theory, Physics and Geometry, 161-222 (2007) · Zbl 1193.81081
[162] Klebanov, I. R.; Torri, G., M2-branes and AdS/CFT, Int. J. Mod. Phys. A, 25, 332-350 (2010) · Zbl 1184.81108 · doi:10.1142/s0217751x10048652
[163] Ooguri, H.; Vafa, C., Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B, 463, 55-72 (1996) · Zbl 1003.83511 · doi:10.1016/0550-3213(96)00008-9
[164] Gauntlett, J. P.; Gomis, J.; Townsend, P. K., BPS bounds for worldvolume branes, J. High Energy Phys. (1998) · Zbl 0958.81062 · doi:10.1088/1126-6708/1998/01/003
[165] Howe, P. S.; Lambert, N. D.; West, P. C., The threebrane soliton of the M-fivebrane, Phys. Lett. B, 419, 79-83 (1998) · doi:10.1016/s0370-2693(97)01433-0
[166] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353 (1988) · Zbl 0656.53078 · doi:10.1007/bf01223371
[167] Gaiotto, D.; Moore, G. W.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation (2009)
[168] Argyres, P. C.; Ronen Plesser, M.; Seiberg, N., The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B, 471, 159-194 (1996) · Zbl 1003.81565 · doi:10.1016/0550-3213(96)00210-6
[169] Gaiotto, D.; Neitzke, A.; Tachikawa, Y., Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys., 294, 389-410 (2010) · Zbl 1207.81169 · doi:10.1007/s00220-009-0938-6
[170] Maruyoshi, K.; Tachikawa, Y.; Yan, W.; Yonekura, K., dynamics with T_N theory, J. High Energy Phys. (2013) · Zbl 1342.81602 · doi:10.1007/JHEP10(2013)010
[171] Hayashi, H.; Tachikawa, Y.; Yonekura, K., Mass-deformed T_N as a linear quiver, J. High Energy Phys. (2015) · Zbl 1387.81354 · doi:10.1007/jhep02(2015)089
[172] Lemos, M.; Peelaers, W., Chiral algebras for trinion theories, J. High Energy Phys. (2015) · Zbl 1387.81256 · doi:10.1007/jhep02(2015)113
[173] Argyres, P. C.; Maruyoshi, K.; Tachikawa, Y., Quantum Higgs branches of isolated N = 2 superconformal field theories, J. High Energy Phys. (2012) · Zbl 1397.81334 · doi:10.1007/JHEP10(2012)054
[174] Xie, D.; Yonekura, K., The moduli space of vacua of \(####\) class \(####\) theories, J. High Energy Phys. (2014) · doi:10.1007/jhep10(2014)134
[175] Argyres, P. C.; Buchel, A., New S-dualities in N = 2 supersymmetric SU(2) × SU(2) gauge theory, J. High Energy Phys. (1999) · doi:10.1088/1126-6708/1999/11/014
[176] Green, D.; Komargodski, Z.; Seiberg, N.; Tachikawa, Y.; Wecht, B., Exactly Marginal deformations and global symmetries, J. High Energy Phys. (2010) · Zbl 1288.81079 · doi:10.1007/jhep06(2010)106
[177] Grimm, T. W.; Klemm, A.; Mariño, M.; Weiss, M., Direct integration of the topological string, J. High Energy Phys. (2007) · Zbl 1326.81191 · doi:10.1088/1126-6708/2007/08/058
[178] Witten, E., Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B, 500, 3-42 (1997) · Zbl 0934.81066 · doi:10.1016/s0550-3213(97)00416-1
[179] Festuccia, G.; Seiberg, N., Rigid supersymmetric theories in curved superspace, J. High Energy Phys. (2011) · Zbl 1298.81145 · doi:10.1007/jhep06(2011)114
[180] Dumitrescu, T. T.; Festuccia, G.; Seiberg, N., Exploring curved superspace, J. High Energy Phys. (2012) · Zbl 1397.81356 · doi:10.1007/jhep08(2012)141
[181] Dumitrescu, T. T.; Festuccia, G., Exploring curved superspace (II), J. High Energy Phys. (2013) · Zbl 1342.81359 · doi:10.1007/jhep01(2013)072
[182] de Medeiros, P., Rigid supersymmetry, conformal coupling and twistor spinors, J. High Energy Phys. (2014) · Zbl 1333.81168 · doi:10.1007/jhep09(2014)032
[183] Kehagias, A.; Russo, J. G., Global supersymmetry on curved spaces in various dimensions, Nucl. Phys. B, 873, 116-136 (2013) · Zbl 1282.81166 · doi:10.1016/j.nuclphysb.2013.04.010
[184] Hama, N.; Hosomichi, K.; Lee, S., Notes on SUSY gauge theories on three-sphere, J. High Energy Phys. (2011) · Zbl 1301.81133 · doi:10.1007/jhep03(2011)127
[185] Hama, N.; Hosomichi, K.; Lee, S., SUSY gauge theories on squashed three-spheres, J. High Energy Phys. (2011) · Zbl 1296.81061 · doi:10.1007/jhep05(2011)014
[186] Nosaka, T.; Terashima, S., Supersymmetric gauge theories on a squashed four-sphere, J. High Energy Phys. (2013) · doi:10.1007/jhep12(2013)001
[187] Chen, H-Y; Tsai, T-H, On Higgs branch localization of Seiberg-Witten theories on an ellipsoid, Prog. Theor. Exp. Phys., 2016 (2016) · Zbl 1361.81110 · doi:10.1093/ptep/ptv188
[188] Pan, Y.; Peelaers, W., Ellipsoid partition function from Seiberg-Witten monopoles, J. High Energy Phys. (2015) · Zbl 1390.81715 · doi:10.1007/jhep10(2015)183
[189] Nieri, F.; Pan, Y.; Zabzine, M., 3D expansions of 5D instanton partition functions, J. High Energy Phys. (2018) · Zbl 1390.81614 · doi:10.1007/jhep04(2018)092
[190] Nieri, F.; Pan, Y.; Zabzine, M., Bootstrapping the S^5 partition function, EPJ Web Conf., 191 (2018) · doi:10.1051/epjconf/201819106005
[191] Dumitrescu, T. T., An introduction to supersymmetric field theories in curved space, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1386.81138 · doi:10.1088/1751-8121/aa62f5
[192] Gerchkovitz, E.; Gomis, J.; Ishtiaque, N.; Karasik, A.; Komargodski, Z.; Pufu, S. S., Correlation functions of coulomb branch operators, J. High Energy Phys. (2017) · Zbl 1373.81324 · doi:10.1007/jhep01(2017)103
[193] Tachikawa, Y., Five-dimensional Chern-Simons terms and Nekrasov’s instanton counting, J. High Energy Phys. (2004) · doi:10.1088/1126-6708/2004/02/050
[194] Nekrasov, N.; Pestun, V., Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories (2012)
[195] Zhang, X., Seiberg-Witten geometry of four-dimensional N = 2 SO-USp quiver gauge theories, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.125015
[196] Nekrasov, N.; Witten, E., The omega deformation, branes, integrability, and Liouville theory, J. High Energy Phys. (2010) · Zbl 1291.81265 · doi:10.1007/jhep09(2010)092
[197] Hellerman, S.; Orlando, D.; Reffert, S., The omega deformation from string and M-theory, J. High Energy Phys. (2012) · Zbl 1397.81255 · doi:10.1007/jhep07(2012)061
[198] Lambert, N.; Orlando, D.; Reffert, S., Omega-deformed Seiberg-Witten effective action from the M5-brane, Phys. Lett. B, 723, 229-235 (2013) · Zbl 1311.83063 · doi:10.1016/j.physletb.2013.05.010
[199] Orlando, D.; Reffert, S., Deformed supersymmetric gauge theories from the fluxtrap background, Int. J. Mod. Phys. A, 28, 1330044 (2013) · Zbl 1279.83003 · doi:10.1142/s0217751x13300445
[200] Lambert, N.; Orlando, D.; Reffert, S., Alpha- and omega-deformations from fluxes in M-theory, J. High Energy Phys. (2014) · Zbl 1333.81260 · doi:10.1007/jhep11(2014)162
[201] Atiyah, M. F.; Hitchin, N. J.; Drinfeld, V. G.; Manin, Y. I., Construction of instantons, Phys. Lett. A, 65, 185-187 (1978) · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-x
[202] Witten, E., Sigma models and the ADHM construction of instantons, J. Geom. Phys., 15, 215-226 (1995) · Zbl 0816.53050 · doi:10.1016/0393-0440(94)00047-8
[203] Witten, E., Small instantons in string theory, Nucl. Phys. B, 460, 541-559 (1996) · Zbl 0935.81052 · doi:10.1016/0550-3213(95)00625-7
[204] Douglas, M. R.; Baulieu, L.; Kazakov, V.; Picco, M.; Windey, P.; Di Francesco, P.; Douglas, M. R., Branes Within Branes, 267-275 (1999)
[205] Moore, G.; Nekrasov, N.; Shatashvili, S., Integrating over Higgs branches, Commun. Math. Phys., 209, 97-121 (2000) · Zbl 0981.53082 · doi:10.1007/pl00005525
[206] Losev, A.; Nekrasov, N.; Shatashvili, S., Issues in topological gauge theory, Nucl. Phys. B, 534, 549-611 (1998) · Zbl 0954.57013 · doi:10.1016/s0550-3213(98)00628-2
[207] Losev, A.; Nekrassov, N.; Shatashvili, S.; Baulieu, L.; Kazakov, V.; Picco, M.; Windey, P.; Di Francesco, P.; Douglas, M. R., Testing Seiberg-Witten Solution, 359-372 (1999)
[208] Marino, M.; Wyllard, N., A note on instanton counting for N = 2 gauge theories with classical gauge groups, J. High Energy Phys. (2004) · doi:10.1088/1126-6708/2004/05/021
[209] Nekrasov, N.; Shadchin, S., ABCD of instantons, Commun. Math. Phys., 252, 359-391 (2004) · Zbl 1108.81038 · doi:10.1007/s00220-004-1189-1
[210] Martens, J., Equivariant volumes of non-compact quotients and instanton counting, Commun. Math. Phys., 281, 827-857 (2008) · Zbl 1230.53071 · doi:10.1007/s00220-008-0501-x
[211] Kimura, T.; Pestun, V., Super instanton counting and localization (2019)
[212] Rodríguez-Gómez, D.; Zafrir, G., On the 5D instanton index as a Hilbert series, Nucl. Phys. B, 878, 1-11 (2014) · Zbl 1284.81256 · doi:10.1016/j.nuclphysb.2013.11.006
[213] Kim, H-C, Line defects and 5D instanton partition functions, J. High Energy Phys. (2016) · doi:10.1007/jhep03(2016)199
[214] Benvenuti, S.; Hanany, A.; Mekareeya, N., The Hilbert series of the one instanton moduli space, J. High Energy Phys. (2010) · Zbl 1288.81074 · doi:10.1007/jhep06(2010)100
[215] Hanany, A.; Kalveks, R., Construction and deconstruction of single instanton Hilbert series, J. High Energy Phys. (2015) · Zbl 1388.81324 · doi:10.1007/jhep12(2015)118
[216] Hanany, A.; Mekareeya, N.; Razamat, S. S., Hilbert series for moduli spaces of two instantons, J. High Energy Phys. (2013) · Zbl 1342.81494 · doi:10.1007/jhep01(2013)070
[217] Cremonesi, S.; Ferlito, G.; Hanany, A.; Mekareeya, N., Coulomb branch and the moduli space of instantons, J. High Energy Phys. (2014) · doi:10.1007/jhep12(2014)103
[218] Billo, M.; Frau, M.; Gallot, L.; Lerda, A.; Pesando, I., Deformed N = 2 theories, generalized recursion relations and S-duality, J. High Energy Phys. (2013) · Zbl 1342.81327 · doi:10.1007/JHEP04(2013)039
[219] Billó, M.; Frau, M.; Gallot, L.; Lerda, A.; Pesando, I., Modular anomaly equation, heat kernel and S-duality in \(####\) theories, J. High Energy Phys. (2013) · doi:10.1007/jhep11(2013)123
[220] Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.; Poghossian, R.; Ricci Pacifici, D., Modular anomaly equations in \(####\) theories and their large-N limit, J. High Energy Phys. (2014) · doi:10.1007/jhep10(2014)131
[221] Billó, M.; Frau, M.; Fucito, F.; Morales, J. F.; Lerda, A., S-duality and the prepotential in \(####\) theories (I): the ADE algebras, J. High Energy Phys. (2015) · Zbl 1388.81287 · doi:10.1007/JHEP11(2015)024
[222] Billó, M.; Frau, M.; Fucito, F.; Morales, J. F.; Lerda, A., S-duality and the prepotential of \(####\) theories (II): the non-simply laced algebras, J. High Energy Phys. (2015) · Zbl 1388.81288 · doi:10.1007/JHEP11(2015)026
[223] Billò, M.; Frau, M.; Fucito, F.; Morales, J. F.; Lerda, A., Resumming instantons in N = 2* theories with arbitrary gauge groups, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, vol 4, 4139-4150 (2017)
[224] Ashok, S. K.; Billò, M.; Dell’Aquila, E.; Frau, M.; Lerda, A.; Raman, M., Modular anomaly equations and S-duality in \(####\) conformal SQCD, J. High Energy Phys. (2015) · Zbl 1388.81197 · doi:10.1007/JHEP10(2015)091
[225] Ashok, S. K.; Dell’Aquila, E.; Lerda, A.; Raman, M., S-duality, triangle groups and modular anomalies in \(####\) SQCD, J. High Energy Phys. (2016) · Zbl 1388.81074 · doi:10.1007/JHEP04(2016)118
[226] Keller, C. A.; Song, J., Counting exceptional instantons, J. High Energy Phys. (2012) · Zbl 1398.81244 · doi:10.1007/jhep07(2012)085
[227] Nakamura, S.; Okazawa, F.; Matsuo, Y., Recursive method for the Nekrasov partition function for classical Lie groups, Prog. Theor. Exp. Phys., 2015 (2015) · Zbl 1348.81429 · doi:10.1093/ptep/ptv014
[228] Kim, J.; Kim, S-S; Lee, K-H; Lee, K.; Song, J.; Kim, J.; Kim, S-S; Lee, K-H; Lee, K.; Song, J., Instantons from blow-up, J. High Energy Phys.. J. High Energy Phys. (2020) · doi:10.1007/jhep06(2020)124
[229] Coman, I.; Pomoni, E.; Teschner, J., Trinion conformal blocks from topological strings, J. High Energy Phys. (2020) · Zbl 1454.83128 · doi:10.1007/jhep09(2020)078
[230] Ito, Y.; Maruyoshi, K.; Okuda, T., Scheme dependence of instanton counting in ALE spaces, J. High Energy Phys. (2013) · Zbl 1342.81519 · doi:10.1007/jhep05(2013)045
[231] Dey, A.; Hanany, A.; Mekareeya, N.; Rodríguez-Gómez, D.; Seong, R-K, Hilbert series for moduli spaces of instantons on C^2/Z_n, J. High Energy Phys. (2014) · doi:10.1007/jhep01(2014)182
[232] Bruzzo, U.; Pedrini, M.; Sala, F.; Szabo, R. J., Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, Adv. Math., 288, 1175-1308 (2016) · Zbl 1375.81223 · doi:10.1016/j.aim.2015.11.005
[233] Bershtein, M. A.; Shchechkin, A. I., Bilinear equations on Painlevé τ functions from CFT, Commun. Math. Phys., 339, 1021-1061 (2015) · Zbl 1332.34141 · doi:10.1007/s00220-015-2427-4
[234] Mekareeya, N., The moduli space of instantons on an ALE space from 3D \(####\) field theories, J. High Energy Phys. (2015) · Zbl 1388.81863 · doi:10.1007/JHEP12(2015)174
[235] Ohkawa, R., Functional equations of Nekrasov functions proposed by Ito, Maruyoshi, and Okuda, Moscow Math. J., 20, 531-573 (2020) · Zbl 1468.14022 · doi:10.17323/1609-4514-2020-20-3-531-573
[236] Bonelli, G.; Sciarappa, A.; Tanzini, A.; Vasko, P., The stringy instanton partition function, J. High Energy Phys. (2014) · Zbl 1333.81316 · doi:10.1007/jhep01(2014)038
[237] Pini, A.; Rodriguez-Gomez, D., Aspects of the moduli space of instantons on \(####P^2\) and its orbifolds, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.026009
[238] Bershtein, M.; Bonelli, G.; Ronzani, M.; Tanzini, A., Gauge theories on compact toric surfaces, conformal field theories and equivariant Donaldson invariants, J. Geom. Phys., 118, 40-50 (2017) · Zbl 1371.53089 · doi:10.1016/j.geomphys.2017.01.012
[239] Nekrasov, N.; Prabhakar, N. S., Spiked instantons from intersecting D-branes, Nucl. Phys. B, 914, 257-300 (2017) · Zbl 1353.81094 · doi:10.1016/j.nuclphysb.2016.11.014
[240] Kimura, T.; Nian, J.; Zhao, P., Partition functions of \(####\) gauge theories on \(####\) and duality, Int. J. Mod. Phys. A, 35, 2050207 (2020) · doi:10.1142/s0217751x20502073
[241] Hwang, C.; Kim, J.; Kim, S.; Park, J.; Hwang, C.; Kim, J.; Kim, S.; Park, J., General instanton counting and 5D SCFT. General instanton counting and 5D SCFT, J. High Energy Phys.. J. High Energy Phys. (2016) · Zbl 1388.81332 · doi:10.1007/JHEP04(2016)094
[242] Cordova, C.; Shao, S-H, An index formula for supersymmetric quantum Mechanics (2014)
[243] Hori, K.; Kim, H.; Yi, P., Witten index and wall crossing, J. High Energy Phys. (2015) · Zbl 1388.81832 · doi:10.1007/jhep01(2015)124
[244] Nakamura, S., On the Jeffrey-Kirwan residue of BCD-instantons, Prog. Theor. Exp. Phys., 2015 (2015) · Zbl 1348.81428 · doi:10.1093/ptep/ptv085
[245] Fateev, V. A.; Litvinov, A. V., Integrable structure, W-symmetry and AGT relation, J. High Energy Phys. (2012) · Zbl 1306.81100 · doi:10.1007/jhep01(2012)051
[246] Argyres, P. C.; Pelland, S., Comparing instanton contributions with exact results in N = 2 supersymmetric scale invariant theories, J. High Energy Phys. (2000) · Zbl 0959.81095 · doi:10.1088/1126-6708/2000/03/014
[247] Marshakov, A.; Mironov, A.; Morozov, A., Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N(f) = 2N(c) QCD, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/11/048
[248] Billo, M.; Gallot, L.; Lerda, A.; Pesando, I., F-theoretic versus microscopic description of a conformal N = 2 SYM theory, J. High Energy Phys. (2010) · Zbl 1294.81088 · doi:10.1007/JHEP11(2010)041
[249] Dedushenko, M., Gluing: I. Integrals and symmetries, J. High Energy Phys. (2020) · Zbl 1436.81127 · doi:10.1007/jhep04(2020)175
[250] Dedushenko, M., Gluing: II. Boundary localization and Gluing formulas (2018)
[251] Lemos, M., Lectures on chiral algebras of \(####\) superconformal field theories (2020)
[252] Dei, A.; Eberhardt, L., Correlators of the symmetric product orbifold, J. High Energy Phys. (2020) · Zbl 1434.81098 · doi:10.1007/jhep01(2020)108
[253] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-x
[254] Dorn, H.; Otto, H-J, Two- and three-point functions in Liouville theory, Nucl. Phys. B, 429, 375-388 (1994) · Zbl 1020.81770 · doi:10.1016/0550-3213(94)00352-1
[255] Zamolodchikov, A.; Zamolodchikov, A., Conformal bootstrap in Liouville field theory, Nucl. Phys. B, 477, 577-605 (1996) · Zbl 0925.81301 · doi:10.1016/0550-3213(96)00351-3
[256] Okuda, T.; Pestun, V., On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S^4, J. High Energy Phys. (2012) · Zbl 1309.81168 · doi:10.1007/JHEP03(2012)017
[257] Mironov, A.; Mironov, S.; Morozov, A.; Morozov, A., CFT exercises for the needs of AGT, Teor. Mat. Fiz., 165, 503-542 (2010) · Zbl 1254.81079 · doi:10.1007/s11232-010-0136-x
[258] Mironov, A.; Morozov, A., On AGT relation in the case of U(3), Nucl. Phys. B, 825, 1-37 (2010) · Zbl 1196.81205 · doi:10.1016/j.nuclphysb.2009.09.011
[259] Alba, V.; Morozov, A., Check of AGT relation for conformal blocks on sphere, Nucl. Phys. B, 840, 441-468 (2010) · Zbl 1206.81110 · doi:10.1016/j.nuclphysb.2010.05.016
[260] Popolitov, A., On relation between Nekrasov functions and BS periods in pure SU(N) case (2010)
[261] Kanno, S.; Matsuo, Y.; Shiba, S., Analysis of correlation functions in Toda theory and AGT-W relation for SU(3) quiver, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.066009
[262] Shiba, S., Notes on three-point functions of A_N−1 Toda theory and AGT-W relation for SU(N) quiver, J. High Energy Phys. (2011) · doi:10.1007/jhep12(2011)108
[263] Mironov, S.; Morozov, A.; Zenkevich, Y., Generalized Jack polynomials and the AGT relations for the SU(3) group, JETP Lett., 99, 109-113 (2014) · doi:10.1134/s0021364014020076
[264] Braverman, A., Instanton counting via affine Lie algebras: I. Equivariant J functions of (affine) flag manifolds and Whittaker vectors (2004)
[265] Braverman, A.; Etingof, P., Instanton counting via affine Lie algebras: II. From Whittaker vectors to the Seiberg-Witten prepotential (2004)
[266] Sala, F.; Tortella, P., Representations of the Heisenberg algebra and moduli spaces of framed sheaves (2010)
[267] Awata, H.; Feigin, B.; Hoshino, A.; Kanai, M.; Shiraishi, J.; Yanagida, S., Notes on Ding-Iohara algebra and AGT conjecture (2011)
[268] Schiffmann, O.; Vasserot, E., Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A^2, Publ. Math. IHES, 118, 213-342 (2013) · Zbl 1284.14008 · doi:10.1007/s10240-013-0052-3
[269] Maulik, D.; Okounkov, A., Quantum groups and quantum cohomology (2012)
[270] Tan, M-C, M-theoretic derivations of 4D-2D dualities: from a geometric langlands duality for surfaces, to the AGT correspondence, to integrable systems, J. High Energy Phys. (2013) · Zbl 1342.83431 · doi:10.1007/jhep07(2013)171
[271] Kanno, S.; Matsuo, Y.; Zhang, H., Extended conformal symmetry and recursion formulae for nekrasov partition function, J. High Energy Phys. (2013) · doi:10.1007/jhep08(2013)028
[272] Tan, M-C, An M-theoretic derivation of a 5D and 6D AGT correspondence, and relativistic and elliptized integrable systems, J. High Energy Phys. (2013) · doi:10.1007/jhep12(2013)031
[273] Smirnov, A., Polynomials associated with fixed points on the instanton moduli space (2014)
[274] Braverman, A.; Finkelberg, M.; Nakajima, H., Instanton moduli spaces and \(####\)-algebras (2014)
[275] Bourgine, J-E, Spherical Hecke algebra in the Nekrasov-Shatashvili limit, J. High Energy Phys. (2015) · Zbl 1388.81293 · doi:10.1007/jhep01(2015)114
[276] Carlsson, E., AGT and the Segal-Sugawara construction, J. Math. Phys., 58 (2017) · Zbl 1355.81107 · doi:10.1063/1.4974352
[277] Fukuda, M.; Nakamura, S.; Matsuo, Y.; Zhu, R-D, SH^c realization of minimal model CFT: triality, poset and Burge condition, J. High Energy Phys. (2015) · doi:10.1007/jhep11(2015)168
[278] Neguţ, A., Exts and the AGT relations, Lett. Math. Phys., 106, 1265-1316 (2016) · Zbl 1348.14030 · doi:10.1007/s11005-016-0865-3
[279] Bourgine, J-E; Matsuo, Y.; Zhang, H., Holomorphic field realization of SH^c and quantum geometry of quiver gauge theories, J. High Energy Phys. (2016) · doi:10.1007/jhep04(2016)167
[280] Nekrasov, N., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, J. High Energy Phys. (2016) · Zbl 1388.81872 · doi:10.1007/jhep03(2016)181
[281] Awata, H.; Fujino, H.; Ohkubo, Y., Crystallization of deformed Virasoro algebra, Ding-Iohara-Miki algebra, and 5D AGT correspondence, J. Math. Phys., 58 (2017) · Zbl 1422.17024 · doi:10.1063/1.4993773
[282] Ohkubo, Y., Singular vector of Ding-Iohara-Miki algebra and Hall-Littlewood limit of 5D AGT conjecture, PhD Thesis (2017)
[283] Chuang, W-y; Creutzig, T.; Diaconescu, D. E.; Soibelman, Y., Hilbert schemes of nonreduced divisors in Calabi-Yau threefolds and W-algebras (2019)
[284] Neguţ, A., Toward AGT for parabolic sheaves (2019)
[285] Shou, B.; Wu, J-F; Yu, M., AGT conjecture and AFLT states: a complete construction (2011)
[286] Estienne, B.; Pasquier, V.; Santachiara, R.; Serban, D., Conformal blocks in virasoro and W theories: duality and the Calogero-Sutherland model, Nucl. Phys. B, 860, 377-420 (2012) · Zbl 1246.81323 · doi:10.1016/j.nuclphysb.2012.03.007
[287] Marshakov, A. V.; Mironov, A. D.; Morozov, A. Y., Combinatorial expansions of conformal blocks, Theor. Math. Phys., 164, 831-852 (2010) · Zbl 1256.81101 · doi:10.1007/s11232-010-0067-6
[288] Mironov, A.; Morozov, A., The power of Nekrasov functions, Phys. Lett. B, 680, 188-194 (2009) · doi:10.1016/j.physletb.2009.08.061
[289] Mironov, A.; Morozov, A.; Morozov, A., Conformal blocks and generalized Selberg integrals, Nucl. Phys. B, 843, 534-557 (2011) · Zbl 1207.81146 · doi:10.1016/j.nuclphysb.2010.10.016
[290] Yagi, J., On the six-dimensional origin of the AGT correspondence, J. High Energy Phys. (2012) · Zbl 1309.81171 · doi:10.1007/jhep02(2012)020
[291] Yagi, J., Compactification on the Ω-background and the AGT correspondence, J. High Energy Phys. (2012) · doi:10.1007/jhep09(2012)101
[292] Bonelli, G.; Sciarappa, A.; Tanzini, A.; Vasko, P., Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) quantum intermediate long wave hydrodynamics, J. High Energy Phys. (2014) · doi:10.1007/jhep07(2014)141
[293] Beem, C.; Rastelli, L.; van Rees, B. C., symmetry in six dimensions, J. High Energy Phys. (2015) · Zbl 1397.81290 · doi:10.1007/JHEP05(2015)017
[294] Hadasz, L.; Jaskolski, Z.; Suchanek, P., Proving the AGT relation for N_f = 0, 1, 2 antifundamentals, J. High Energy Phys. (2010) · Zbl 1290.81141 · doi:10.1007/jhep06(2010)046
[295] Yanagida, S., Norm of logarithmic primary of Virasoro algebra, Lett. Math. Phys., 98, 133-156 (2011) · Zbl 1267.17031 · doi:10.1007/s11005-011-0502-0
[296] Kanno, S.; Matsuo, Y.; Zhang, H., Virasoro constraint for Nekrasov instanton partition function, J. High Energy Phys. (2012) · Zbl 1397.81156 · doi:10.1007/jhep10(2012)097
[297] Beccaria, M., On the large Ω-deformations in the Nekrasov-Shatashvili limit of \(####\) SYM, J. High Energy Phys. (2016) · Zbl 1390.81222 · doi:10.1007/JHEP07(2016)055
[298] Mironov, A.; Morozov, A., Proving AGT relations in the large-c limit, Phys. Lett. B, 682, 118-124 (2009) · doi:10.1016/j.physletb.2009.10.074
[299] Hama, N.; Hosomichi, K., AGT relation in the light asymptotic limit, J. High Energy Phys. (2013) · Zbl 1342.81288 · doi:10.1007/jhep10(2013)152
[300] Morozov, A.; Shakirov, S., From Brezin-Hikami to Harer-Zagier formulas for Gaussian correlators (2010)
[301] Mironov, A.; Morozov, A.; Shakirov, S., Towards a proof of AGT conjecture by methods of matrix models, Int. J. Mod. Phys. A, 27, 1230001 (2012) · Zbl 1247.81397 · doi:10.1142/s0217751x12300013
[302] Mironov, A.; Morozov, A.; Shakirov, S., A direct proof of AGT conjecture at beta = 1, J. High Energy Phys. (2011) · Zbl 1294.81224 · doi:10.1007/JHEP02(2011)067
[303] Belavin, A.; Belavin, V., AGT conjecture and integrable structure of conformal field theory for c = 1, Nucl. Phys. B, 850, 199-213 (2011) · Zbl 1215.81096 · doi:10.1016/j.nuclphysb.2011.04.014
[304] Mironov, A.; Morozov, A.; Shakirov, S.; Smirnov, A., Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B, 855, 128-151 (2012) · Zbl 1229.81184 · doi:10.1016/j.nuclphysb.2011.09.021
[305] Morozov, A.; Smirnov, A., Towards the proof of AGT relations with the help of the generalized Jack polynomials, Lett. Math. Phys., 104, 585-612 (2014) · Zbl 1296.81113 · doi:10.1007/s11005-014-0681-6
[306] Mironov, A.; Morozov, A.; Zenkevich, Y., On elementary proof of AGT relations from six dimensions, Phys. Lett. B, 756, 208-211 (2016) · Zbl 1400.81168 · doi:10.1016/j.physletb.2016.03.006
[307] Aganagic, M.; Haouzi, N.; Kozcaz, C.; Shakirov, S., Gauge/Liouville triality (2013)
[308] Aganagic, M.; Shakirov, S.; Teschner, J., Gauge/Vortex duality and AGT, New Dualities of Supersymmetric Gauge Theories, 419-448 (2016) · Zbl 1334.81064
[309] Teschner, J.; Vartanov, G. S., Supersymmetric gauge theories, quantization of \(####\), and conformal field theory, Adv. Theor. Math. Phys., 19, 1-135 (2015) · Zbl 1316.81073 · doi:10.4310/atmp.2015.v19.n1.a1
[310] Córdova, C.; Jafferis, D. L., Complex Chern-Simons from M5-branes on the squashed three-sphere, J. High Energy Phys. (2017) · Zbl 1383.81164 · doi:10.1007/jhep11(2017)119
[311] Yagi, J., 3D TQFT from 6D SCFT, J. High Energy Phys. (2013) · doi:10.1007/jhep08(2013)017
[312] Lee, S.; Yamazaki, M., 3D Chern-Simons theory from M5-branes, J. High Energy Phys. (2013) · Zbl 1342.81448 · doi:10.1007/jhep12(2013)035
[313] van Leuven, S.; Oling, G., Generalized Toda theory from six dimensions and the conifold, J. High Energy Phys. (2017) · Zbl 1383.81319 · doi:10.1007/jhep12(2017)050
[314] Lechtenfeld, O.; Popov, A. D., Dual infrared limits of 6D N = (2, 0) theory, Phys. Lett. B, 793, 297-302 (2019) · Zbl 1421.81144 · doi:10.1016/j.physletb.2019.02.051
[315] Cordova, C.; Jafferis, D. L., Five-dimensional maximally supersymmetric Yang-Mills in supergravity backgrounds, J. High Energy Phys. (2017) · Zbl 1383.83201 · doi:10.1007/jhep10(2017)003
[316] Dimofte, T., Complex Chern-Simons theory at level k via the 3D-3D correspondence, Commun. Math. Phys., 339, 619-662 (2015) · Zbl 1336.57044 · doi:10.1007/s00220-015-2401-1
[317] Schomerus, V.; Suchanek, P., Liouville’s imaginary shadow, J. High Energy Phys. (2012) · Zbl 1397.81321 · doi:10.1007/jhep12(2012)020
[318] Balasubramanian, A. K., Describing codimension two defects, J. High Energy Phys. (2014) · doi:10.1007/jhep07(2014)095
[319] Toda, M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan, 22, 431-436 (1967) · doi:10.1143/jpsj.22.431
[320] Toda, M., Wave propagation in anharmonic lattices, J. Phys. Soc. Japan, 23, 501-506 (1967) · doi:10.1143/jpsj.23.501
[321] Olshanetsky, M. A.; Perelomov, A. M., Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep., 71, 313 (1981) · doi:10.1016/0370-1573(81)90023-5
[322] Mansfield, P., Light-cone quantisation of the Liouville and Toda field theories, Nucl. Phys. B, 222, 419-445 (1983) · doi:10.1016/0550-3213(83)90543-6
[323] Zamolodchikov, A. B., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 65, 1205-1213 (1985) · doi:10.1007/bf01036128
[324] Fateev, V. A.; Zamolodchikov, A. B., Conformal quantum field theory models in two-dimensions having Z(3) symmetry, Nucl. Phys. B, 280, 644-660 (1987) · doi:10.1016/0550-3213(87)90166-0
[325] Fateev, V. A.; Lykyanov, S. L., The models of two-dimensional conformal quantum field theory with Z(n) symmetry, Int. J. Mod. Phys. A, 03, 507 (1988) · doi:10.1142/s0217751x88000205
[326] Lukyanov, S. L.; Fateev, V. A., Conformally invariant models of two-dimensional QFT with Z(N) symmetry, Sov. Phys. JETP, 67, 447 (1988)
[327] Lukyanov, S. L.; Fateev, V. A., Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Sov. Sci. Rev. A, 15, 1-117 (1990) · Zbl 1411.17002
[328] Fateev, V. A.; Zamolodchikov, A. B., Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP, 62, 215-225 (1985)
[329] Bershadsky, M.; Ooguri, H., Heidden SL(n) symmetry in conformal field theories, Commun. Math. Phys., 126, 49 (1989) · Zbl 0689.17015 · doi:10.1007/bf02124331
[330] Feigin, B.; Frenkel, E., Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B, 246, 75-81 (1990) · Zbl 1242.17023 · doi:10.1016/0370-2693(90)91310-8
[331] Pope, C. N., A review of W strings (1992)
[332] West, P. C., A review of W strings (1993)
[333] Ahn, C.; Fateev, V. A.; Kim, C.; Rim, C.; Yang, B., Reflection amplitudes of ADE Toda theories and thermodynamic Bethe ansatz, Nucl. Phys. B, 565, 611-628 (2000) · Zbl 0973.81070 · doi:10.1016/s0550-3213(99)00705-1
[334] Ahn, C.; Baseilhac, P.; Fateev, V. A.; Kim, C.; Rim, C., Reflection amplitudes in non-simply laced Toda theories and thermodynamic Bethe ansatz, Phys. Lett. B, 481, 114-124 (2000) · Zbl 0990.81056 · doi:10.1016/s0370-2693(00)00417-2
[335] Fateev, V. A., Normalization factors, reflection amplitudes and integrable systems (2001)
[336] Kanno, S.; Matsuo, Y.; Shiba, S.; Tachikawa, Y., N = 2 gauge theories and degenerate fields of Toda theory, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.046004
[337] Fateev, V. A.; Litvinov, A. V., On differential equation on four-point correlation function in the conformal Toda field theory, JETP Lett., 81, 594-598 (2005) · doi:10.1134/1.2029952
[338] Fateev, V. A.; Litvinov, A. V., Correlation functions in conformal Toda field theory: II, J. High Energy Phys. (2009) · Zbl 1243.81189 · doi:10.1088/1126-6708/2009/01/033
[339] Bao, L.; Mitev, V.; Pomoni, E.; Taki, M.; Yagi, F., Non-Lagrangian theories from brane junctions, J. High Energy Phys. (2014) · Zbl 1333.83014 · doi:10.1007/jhep01(2014)175
[340] Mitev, V.; Pomoni, E., Toda three-point functions from topological strings, J. High Energy Phys. (2015) · doi:10.1007/jhep06(2015)049
[341] Isachenkov, M.; Mitev, V.; Pomoni, E., Toda three-point functions from topological strings: II, J. High Energy Phys. (2016) · doi:10.1007/jhep08(2016)066
[342] Aganagic, M.; Haouzi, N., ADE little string theory on a riemann surface (and triality) (2015)
[343] Coman, I.; Pomoni, E.; Teschner, J., Toda conformal blocks, quantum groups, and flat connections, Commun. Math. Phys., 375, 1117-1158 (2019) · Zbl 1439.81081 · doi:10.1007/s00220-019-03617-y
[344] Benini, F.; Tachikawa, Y.; Xie, D., Mirrors of 3D sicilian theories, J. High Energy Phys. (2010) · Zbl 1291.81229 · doi:10.1007/jhep09(2010)063
[345] Nanopoulos, D.; Xie, D., N = 2 generalized superconformal quiver gauge theory, J. High Energy Phys. (2012) · Zbl 1397.81314 · doi:10.1007/jhep09(2012)127
[346] Drukker, N.; Passerini, F., (de)Tails of Toda CFT, J. High Energy Phys. (2011) · Zbl 1250.81093 · doi:10.1007/jhep04(2011)106
[347] Genish, A.; Narovlansky, V., Weak coupling limits and colliding punctures in class-S theories, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.045018
[348] Bajnok, Z.; Palla, L.; Takács, G., A(2) Toda theory in reduced WZNW framework and the representations of the W algebra, Nucl. Phys. B, 385, 329-360 (1992) · doi:10.1016/0550-3213(92)90104-j
[349] Bowcock, P.; Watts, G. M T., Null vectors, three-point and four-point functions in conformal field theory, Theor. Math. Phys., 98, 350-356 (1994) · Zbl 0834.17041 · doi:10.1007/bf01102212
[350] Belavin, V.; Estienne, B.; Foda, O.; Santachiara, R., Correlation functions with fusion-channel multiplicity in \(####\) Toda field theory, J. High Energy Phys. (2016) · doi:10.1007/jhep06(2016)137
[351] Belavin, V.; Cao, X.; Estienne, B.; Santachiara, R., Second level semi-degenerate fields in \(####\) Toda theory: matrix element and differential equation, J. High Energy Phys. (2017) · Zbl 1377.81152 · doi:10.1007/JHEP03(2017)008
[352] Belavin, V.; Haraoka, Y.; Santachiara, R., Rigid Fuchsian systems in two-dimensional conformal field theories, Commun. Math. Phys., 365, 17-60 (2019) · Zbl 1435.37083 · doi:10.1007/s00220-018-3274-x
[353] Furlan, P.; Petkova, V. B., On some three-point functions in the W_4 CFT and related braiding matrix, J. High Energy Phys. (2015) · Zbl 1388.81661 · doi:10.1007/JHEP12(2015)079
[354] Furlan, P.; Petkova, V. B., W_4 toda example as hidden Liouville CFT, Phys. Part. Nucl. Lett., 14, 286-290 (2017) · doi:10.1134/s1547477117020108
[355] Agarwal, P.; Bah, I.; Maruyoshi, K.; Song, J., Quiver tails and \(####\) SCFTs from M5-branes, J. High Energy Phys. (2015) · Zbl 1388.81749 · doi:10.1007/JHEP03(2015)049
[356] Nanopoulos, D.; Xie, D., Hitchin equation, singularity, and N = 2 superconformal field theories, J. High Energy Phys. (2010) · Zbl 1271.81114 · doi:10.1007/jhep03(2010)043
[357] Balasubramanian, A.; Bouchard, V.; Méndez-Diez, S.; Quigley, C.; Doran, C., Codimension two defects and the springer correspondence, vol 93, p 89 (2015)
[358] Balasubramanian, A.; Distler, J., Masses, sheets and rigid SCFTs (2018)
[359] Haouzi, N.; Schmid, C., Little string origin of surface defects, J. High Energy Phys. (2017) · Zbl 1380.83256 · doi:10.1007/jhep05(2017)082
[360] Haouzi, N.; Kozçaz, C., The ABCDEFG of little strings, J. High Energy Phys. (2021) · Zbl 1466.83124 · doi:10.1007/jhep06(2021)092
[361] Agarwal, P.; Song, J., New N = 1 dualities from M5-branes and outer-automorphism twists, J. High Energy Phys. (2014) · doi:10.1007/jhep03(2014)133
[362] Witten, E., Gauge theory and wild ramification (2007)
[363] Argyres, P. C.; Ronen Plesser, M.; Seiberg, N.; Witten, E., New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B, 461, 71-84 (1996) · Zbl 1004.81557 · doi:10.1016/0550-3213(95)00671-0
[364] Minahan, J. A.; Nemeschansku, D., An N = 2 superconformal fixed point with E(6) global symmetry, Nucl. Phys. B, 482, 142-152 (1996) · Zbl 0925.81309 · doi:10.1016/s0550-3213(96)00552-4
[365] Minahan, J. A.; Nemeschansky, D., Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B, 489, 24-46 (1997) · Zbl 0925.81382 · doi:10.1016/s0550-3213(97)00039-4
[366] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Wild quiver gauge theories, J. High Energy Phys. (2012) · Zbl 1309.81144 · doi:10.1007/jhep02(2012)031
[367] Gaiotto, D.; Teschner, J., Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories: I, J. High Energy Phys. (2012) · Zbl 1397.81305 · doi:10.1007/JHEP12(2012)050
[368] Marshakov, A.; Mironov, A.; Morozov, A., On non-conformal limit of the AGT relations, Phys. Lett. B, 682, 125-129 (2009) · doi:10.1016/j.physletb.2009.10.077
[369] Alba, V.; Morozov, A., Non-conformal limit of AGT relation from the one-point torus conformal block, JETP Lett., 90, 708-712 (2009) · doi:10.1134/S0021364009230040
[370] Eguchi, T.; Maruyoshi, K., Penner type matrix model and Seiberg-Witten theory, J. High Energy Phys. (2010) · Zbl 1270.81165 · doi:10.1007/jhep02(2010)022
[371] Yanagida, S., Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial, J. Algebra, 333, 278-294 (2011) · Zbl 1252.17015 · doi:10.1016/j.jalgebra.2011.02.039
[372] Itoyama, H.; Oota, T.; Yonezawa, N., Massive scaling limit of beta-deformed matrix model of Selberg type, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.085031
[373] Krefl, D., Penner type ensemble for gauge theories revisited, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.045027
[374] Piatek, M.; Pietrykowski, A. R., Classical irregular block, \(####\) pure gauge theory and Mathieu equation, J. High Energy Phys. (2014) · Zbl 1390.81343 · doi:10.1007/JHEP12(2014)032
[375] Alekseev, S. O.; Litvinov, M. V., On resummation of the irregular conformal block (2018)
[376] Felinska, E.; Jaskolski, Z.; Kosztolowicz, M.; Felinska, E.; Jaskolski, Z.; Kosztolowicz, M., Whittaker pairs for the Virasoro algebra and the Gaiotto - BMT states, J. Math. Phys.. J. Math.Phys., 53 (2012) · Zbl 1317.17028 · doi:10.1063/1.4771670
[377] Nishinaka, T.; Rim, C., Matrix models for irregular conformal blocks and Argyres-Douglas theories, J. High Energy Phys. (2012) · Zbl 1397.81317 · doi:10.1007/jhep10(2012)138
[378] Kanno, H.; Maruyoshi, K.; Shiba, S.; Taki, M., irregular states and isolated \(####\) superconformal field theories, J. High Energy Phys. (2013) · doi:10.1007/jhep03(2013)147
[379] Choi, S-K; Rim, C., Parametric dependence of irregular conformal block, J. High Energy Phys. (2014) · Zbl 1333.83137 · doi:10.1007/jhep04(2014)106
[380] Choi, S. K.; Rim, C.; Zhang, H., Virasoro irregular conformal block and beta deformed random matrix model, Phys. Lett. B, 742, 50-54 (2015) · Zbl 1345.17017 · doi:10.1016/j.physletb.2015.01.003
[381] Taki, M., On AGT conjecture for pure super Yang-Mills and W-algebra, J. High Energy Phys. (2011) · Zbl 1296.81069 · doi:10.1007/jhep05(2011)038
[382] He, W., A note on W symmetry of N = 2 gauge theory (2012)
[383] Gaiotto, D.; Lamy-Poirier, J., Irregular singularities in the H + 3 WZW model (2013)
[384] Rim, C., Irregular conformal block and its matrix model (2012)
[385] Matsuo, Y.; Rim, C.; Zhang, H., Construction of Gaiotto states with fundamental multiplets through degenerate DAHA, J. High Energy Phys. (2014) · doi:10.1007/jhep09(2014)028
[386] Rim, C.; Zhang, H., Classical Virasoro irregular conformal block, J. High Energy Phys. (2015) · Zbl 1388.81695 · doi:10.1007/jhep07(2015)163
[387] Choi, S. K.; Rim, C., Irregular matrix model with \(####\) symmetry, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.81485 · doi:10.1088/1751-8113/49/7/075201
[388] Rim, C.; Zhang, H., Classical Virasoro irregular conformal block: II, J. High Energy Phys. (2015) · Zbl 1388.81696 · doi:10.1007/jhep09(2015)097
[389] Choi, S. K.; Rim, C.; Zhang, H., Irregular conformal block, spectral curve and flow equations, J. High Energy Phys. (2016) · Zbl 1388.81646 · doi:10.1007/jhep03(2016)118
[390] Rim, C.; Zhang, H., Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation, Nucl. Phys. B, 919, 182-208 (2017) · Zbl 1361.81098 · doi:10.1016/j.nuclphysb.2017.03.012
[391] Rim, C., Irregular conformal states and spectral curve: irregular matrix model approach, Symmetry, Integrability Geometry Methods Appl., 13, 012 (2017) · Zbl 1423.81165 · doi:10.3842/sigma.2017.012
[392] Yanagida, S., Whittaker vector of deformed Virasoro algebra and Macdonald symmetric functions, Lett. Math. Phys., 106, 395-431 (2016) · Zbl 1408.17007 · doi:10.1007/s11005-016-0821-2
[393] Di Francesco, P.; Kedem, R.; Turmunkh, B., A path model for Whittaker vectors, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1370.81090 · doi:10.1088/1751-8121/aa7151
[394] Nagoya, H., Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations, J. Math. Phys., 56 (2015) · Zbl 1328.81195 · doi:10.1063/1.4937760
[395] Polyakov, D.; Rim, C., Irregular vertex operators for irregular conformal blocks, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.106002
[396] Polyakov, D.; Rim, C., Vertex operators for irregular conformal blocks: supersymmetric case, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.086011
[397] Polyakov, D.; Rim, C., Super-spectral curve of irregular conformal blocks, J. High Energy Phys. (2016) · Zbl 1390.83248 · doi:10.1007/jhep12(2016)004
[398] Nagoya, H., Conformal blocks and Painlevé functions (2016)
[399] Choi, S-K; Polyakov, D.; Zhang, C., Interactions of irregular Gaiotto states in Liouville theory, Eur. Phys. J. C, 78, 507 (2018) · doi:10.1140/epjc/s10052-018-5976-9
[400] Piatek, M. R.; Pietrykowski, A. R., Solvable spectral problems from 2D CFT and = 2 gauge theories, J. Phys. Conf. Ser., 965 (2018) · doi:10.1088/1742-6596/965/1/012031
[401] Nishinaka, T.; Uetoko, T., Argyres-Douglas theories and Liouville irregular states, J. High Energy Phys. (2019) · Zbl 1423.81181 · doi:10.1007/jhep09(2019)104
[402] Argyres, P. C.; Seiberg, N., S-duality in N = 2 supersymmetric gauge theories, J. High Energy Phys. (2007) · Zbl 1246.81102 · doi:10.1088/1126-6708/2007/12/088
[403] Tachikawa, Y., S-duality via outer-automorphism twists, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1214.81169 · doi:10.1088/1751-8113/44/18/182001
[404] Gaiotto, D.; Seiberg, N.; Tachikawa, Y., Comments on scaling limits of 4D N = 2 theories, J. High Energy Phys. (2011) · Zbl 1214.81154 · doi:10.1007/JHEP01(2011)078
[405] Seo, J.; Dasgupta, K., Argyres-douglas loci, singularity structures and wall-crossings in pure N = 2 gauge theories with classical gauge groups, J. High Energy Phys. (2012) · Zbl 1348.81432 · doi:10.1007/JHEP05(2012)072
[406] Cecotti, S.; Del Zotto, M., Infinitely many \(####\) SCFT with ADE flavor symmetry, J. High Energy Phys. (2013) · doi:10.1007/jhep01(2013)191
[407] Cecotti, S.; Del Zotto, M.; Giacomelli, S., More on the \(####\) superconformal systems of type D_p(G), J. High Energy Phys. (2013) · doi:10.1007/jhep04(2013)153
[408] Buican, M.; Giacomelli, S.; Nishinaka, T.; Papageorgakis, C., Argyres-Douglas theories and S-duality, J. High Energy Phys. (2015) · Zbl 1388.81381 · doi:10.1007/jhep02(2015)185
[409] Tachikawa, Y.; Wang, Y.; Zafrir, G., Comments on the twisted punctures of A even class S theory, J. High Energy Phys. (2018) · doi:10.1007/jhep06(2018)163
[410] Zafrir, G., An \(####\) Lagrangian for the rank 1 E_6 superconformal theory, J. High Energy Phys. (2020) · Zbl 1457.81122 · doi:10.1007/JHEP12(2020)098
[411] Nanopoulos, D.; Xie, D., N = 2 SU quiver with USP ends or SU ends with antisymmetric matter, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/08/108
[412] Nanopoulos, D.; Xie, D., Hitchin equation, irregular singularity, and N = 2 asymptotical free theories (2010)
[413] Xie, D., Aspects of four dimensional N = 2 field theory, PhD Thesis (2011)
[414] Xie, D., General argyres-douglas theory, J. High Energy Phys. (2013) · Zbl 1342.81621 · doi:10.1007/jhep01(2013)100
[415] Xie, D., Network, cluster coordinates and N = 2 theory: II. Irregular singularity (2012)
[416] Xie, D.; Zhao, P., Central charges and RG flow of strongly-coupled N = 2 theory, J. High Energy Phys. (2013) · Zbl 1342.81622 · doi:10.1007/JHEP03(2013)006
[417] Wang, Y.; Xie, D., Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.065012
[418] Xie, D.; Yau, S-T, New N = 2 dualities (2016)
[419] Wang, Y.; Xie, D.; Yau, S. S-T; Yau, S-T, 4D \(####\) SCFT from complete intersection singularity, Adv. Theor. Math. Phys., 21, 801-855 (2017) · Zbl 1384.81139 · doi:10.4310/atmp.2017.v21.n3.a6
[420] Xie, D.; Yau, S-T, Argyres-Douglas matter and N = 2 dualities (2017)
[421] Xie, D.; Ye, K., Argyres-Douglas matter and S-duality: II, J. High Energy Phys. (2018) · Zbl 1387.81358 · doi:10.1007/jhep03(2018)186
[422] Xie, D., SCFT with minimal flavor central charge (2017)
[423] Wang, Y.; Xie, D., Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6D (2, 0) theories, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.025001
[424] Chacaltana, O.; Distler, J.; Trimm, A., Seiberg-Witten for spin(n) with spinors, J. High Energy Phys. (2015) · doi:10.1007/jhep08(2015)027
[425] Tachikawa, Y.; Terashima, S., Seiberg-Witten geometries revisited, J. High Energy Phys. (2011) · Zbl 1301.81245 · doi:10.1007/jhep09(2011)010
[426] Bhardwaj, L.; Tachikawa, Y., Classification of 4D \(####\) gauge theories, J. High Energy Phys. (2013) · doi:10.1007/jhep12(2013)100
[427] Argyres, P. C.; Crescimanno, M.; Shapere, A. D.; Wittig, J. R., Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches (2005)
[428] Argyres, P. C.; Wittig, J. R., Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches: II (2005)
[429] Argyres, P.; Lotito, M.; Lü, Y.; Martone, M., Geometric constraints on the space of \(####\) SCFTs: I. Physical constraints on relevant deformations, J. High Energy Phys. (2018) · Zbl 1387.81301 · doi:10.1007/JHEP02(2018)001
[430] Argyres, P. C.; Lotito, M.; Lü, Y.; Martone, M., Geometric constraints on the space of \(####\) SCFTs: II. Construction of special Kähler geometries and RG flows, J. High Energy Phys. (2018) · Zbl 1387.81300 · doi:10.1007/JHEP02(2018)002
[431] Argyres, P. C.; Lotito, M.; Lü, Y.; Martone, M., Expanding the landscape of \(####\) rank 1 SCFTs, J. High Energy Phys. (2016) · Zbl 1388.81758 · doi:10.1007/JHEP05(2016)088
[432] Argyres, P.; Lotito, M.; Lü, Y.; Martone, M., Geometric constraints on the space of \(####\) SCFTs: III. Enhanced Coulomb branches and central charges, J. High Energy Phys. (2018) · Zbl 1387.81302 · doi:10.1007/JHEP02(2018)003
[433] Argyres, P. C.; Long, C.; Martone, M., The singularity structure of scale-invariant rank-2 coulomb branches, J. High Energy Phys. (2018) · Zbl 1391.81184 · doi:10.1007/jhep05(2018)086
[434] Argyres, P. C.; Martone, M., Scaling dimensions of Coulomb branch operators of 4D N = 2 superconformal field theories (2018)
[435] Argyres, P. C.; Martone, M., Coulomb branches with complex singularities, J. High Energy Phys. (2018) · Zbl 1395.81258 · doi:10.1007/jhep06(2018)045
[436] Cecotti, S.; Neitzke, A.; Vafa, C., R-twisting and 4D/2D correspondences (2010)
[437] Cecotti, S.; Vafa, C., Classification of complete N = 2 supersymmetric theories in four dimensions (2011)
[438] Cecotti, S., Categorical tinkertoys for N = 2 gauge theories, Int. J. Mod. Phys. A, 28, 1330006 (2013) · Zbl 1260.81114 · doi:10.1142/s0217751x13300068
[439] Cecotti, S.; Del Zotto, M., Higher S-dualities and shephard-todd groups, J. High Energy Phys. (2015) · Zbl 1388.81034 · doi:10.1007/jhep09(2015)035
[440] Xie, D.; Yau, S-T, 4D N = 2 SCFT and singularity theory: I. Classification (2015)
[441] Chen, B.; Xie, D.; Yau, S-T; Yau, S. S-T; Zuo, H., 4D \(####\) SCFT and singularity theory: II. Complete intersection, Adv. Theor. Math. Phys., 21, 121-145 (2017) · Zbl 1366.81256 · doi:10.4310/atmp.2017.v21.n1.a2
[442] Argyres, P. C.; Martone, M., 4D \(####\) theories with disconnected gauge groups, J. High Energy Phys. (2017) · doi:10.1007/jhep03(2017)145
[443] Caorsi, M.; Cecotti, S., Homological S-duality in 4D \(####\) QFTs, Adv. Theor. Math. Phys., 22, 1593-1711 (2018) · Zbl 07430955 · doi:10.4310/atmp.2018.v22.n7.a1
[444] Argyres, P. C.; Lü, Y.; Martone, M., Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated, J. High Energy Phys. (2017) · Zbl 1380.81381 · doi:10.1007/jhep06(2017)144
[445] Caorsi, M.; Cecotti, S., Categorical webs and S-duality in 4D \(####\) QFT, Commun. Math. Phys., 368, 885-984 (2019) · Zbl 1420.81025 · doi:10.1007/s00220-019-03461-0
[446] Chen, B.; Xie, D.; Yau, S. S-T; Yau, S-T; Zuo, H., 4D \(####\) SCFT and singularity theory: III. Rigid singularity, Adv. Theor. Math. Phys., 22, 1885-1905 (2018) · Zbl 07430959 · doi:10.4310/atmp.2018.v22.n8.a2
[447] Caorsi, M.; Cecotti, S., Homological classification of 4D \(####\) QFT. Rank-1 revisited, J. High Energy Phys. (2019) · Zbl 1427.81069 · doi:10.1007/JHEP10(2019)013
[448] Gaiotto, D.; Maldacena, J., The gravity duals of N = 2 superconformal field theories, J. High Energy Phys. (2012) · doi:10.1007/jhep10(2012)189
[449] Alday, L. F.; Tachikawa, Y.; Benini, F., Liouville/Toda central charges from M5-branes, Phys. Rev. Lett., 105 (2010) · doi:10.1103/physrevlett.105.141601
[450] Balasubramanian, A., The Euler anomaly and scale factors in Liouville/Toda CFTs, J. High Energy Phys. (2014) · doi:10.1007/jhep04(2014)127
[451] Bah, I.; Nardoni, E., Structure of anomalies of 4D SCFTs from M5-branes, and anomaly inflow, J. High Energy Phys. (2019) · Zbl 1414.81181 · doi:10.1007/JHEP03(2019)024
[452] Lawrie, C.; Martelli, D.; Schäfer-Nameki, S., Theories of class F and anomalies, J. High Energy Phys. (2018) · Zbl 1402.83098 · doi:10.1007/jhep10(2018)090
[453] Bah, I.; Bonetti, F.; Minasian, R.; Nardoni, E., Class \(####\) anomalies from M-theory inflow, Phys. Rev. D, 99 (2019) · doi:10.1103/physrevd.99.086020
[454] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 2445-2459 (1974) · doi:10.1103/physrevd.10.2445
[455] ’t Hooft, G., On the phase transition towards permanent quark confinement, Nucl. Phys. B, 138, 1-25 (1978) · doi:10.1016/0550-3213(78)90153-0
[456] Kapustin, A., Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D, 74 (2006) · doi:10.1103/physrevd.74.025005
[457] Okuda, T.; Teschner, J., Line operators in supersymmetric gauge theories and the 2D-4D relation, New Dualities of Supersymmetric Gauge Theories, 195-222 (2016) · Zbl 1334.81070
[458] Gukov, S.; Teschner, J., Surface operators, New Dualities of Supersymmetric Gauge Theories, 223-259 (2016) · Zbl 1334.81068
[459] Ashok, S. K.; Billó, M.; Dell’Aquila, E.; Frau, M.; John, R. R.; Lerda, A., Non-perturbative studies of N = 2 conformal quiver gauge theories, Fortschr. Phys., 63, 259-293 (2015) · Zbl 1338.81280 · doi:10.1002/prop.201500012
[460] Losev, A. S.; Marshakov, A.; Nekrasov, N. A., Small instantons, little strings and free fermions, 581-621 (2003) · Zbl 1081.81103
[461] Flume, R.; Fucito, F.; Morales, J. F.; Poghossian, R., Matone’s relation in the presence of gravitational couplings, J. High Energy Phys. (2004) · doi:10.1088/1126-6708/2004/04/008
[462] Fucito, F.; Morales, J. F.; Poghossian, R.; Tanzini, A., Script N = 1 superpotentials from multi-instanton calculus, J. High Energy Phys. (2006) · doi:10.1088/1126-6708/2006/01/031
[463] Rodriguez-Gomez, D.; Russo, J. G., Operator mixing in large N superconformal field theories on S^4 and correlators with Wilson loops, J. High Energy Phys. (2016) · Zbl 1390.81539 · doi:10.1007/jhep12(2016)120
[464] Baggio, M.; Niarchos, V.; Papadodimas, K.; Vos, G., Large-N correlation functions in \(####\) superconformal QCD, J. High Energy Phys. (2017) · doi:10.1007/jhep01(2017)101
[465] Pini, A.; Rodriguez-Gomez, D.; Russo, J. G., Large N correlation functions \(####\) superconformal quivers, J. High Energy Phys. (2017) · Zbl 1381.81122 · doi:10.1007/JHEP08(2017)066
[466] Bourget, A.; Rodriguez-Gomez, D.; Russo, J. G., Universality of Toda equation in \(####\) superconformal field theories, J. High Energy Phys. (2019) · Zbl 1411.81173 · doi:10.1007/JHEP02(2019)011
[467] Billò, M.; Fucito, F.; Korchemsky, G. P.; Lerda, A.; Morales, J. F., Two-point correlators in non-conformal \(####\) gauge theories, J. High Energy Phys. (2019) · doi:10.1007/jhep05(2019)199
[468] Honda, M., Borel summability of perturbative series in 4D N = 2 and 5D N = 1 supersymmetric theories, Phys. Rev. Lett., 116 (2016) · doi:10.1103/physrevlett.116.211601
[469] Rodriguez-Gomez, D.; Russo, J. G., Large N correlation functions in superconformal field theories, J. High Energy Phys. (2016) · Zbl 1388.81069 · doi:10.1007/jhep06(2016)109
[470] Hellerman, S.; Maeda, S., On the large R-charge expansion in \(####\) superconformal field theories, J. High Energy Phys. (2017) · doi:10.1007/jhep12(2017)135
[471] Bourget, A.; Rodriguez-Gomez, D.; Russo, J. G., A limit for large R-charge correlators in \(####\) theories, J. High Energy Phys. (2018) · Zbl 1391.81149 · doi:10.1007/JHEP05(2018)074
[472] Hellerman, S.; Maeda, S.; Orlando, D.; Reffert, S.; Watanabe, M., Universal correlation functions in rank 1 SCFTs, J. High Energy Phys. (2019) · Zbl 1431.81144 · doi:10.1007/jhep12(2019)047
[473] Beccaria, M., On the large R-charge \(####\) chiral correlators and the Toda equation, J. High Energy Phys. (2019) · Zbl 1411.81199 · doi:10.1007/JHEP02(2019)009
[474] Beccaria, M., Double scaling limit of N = 2 chiral correlators with Maldacena-Wilson loop, J. High Energy Phys. (2019) · Zbl 1411.81200 · doi:10.1007/JHEP02(2019)095
[475] Grassi, A.; Komargodski, Z.; Tizzano, L., Extremal correlators and random matrix theory, J. High Energy Phys. (2021) · Zbl 1462.81197 · doi:10.1007/jhep04(2021)214
[476] Beccaria, M.; Galvagno, F.; Hasan, A., conformal gauge theories at large R-charge: the SU(N) case, J. High Energy Phys. (2020) · doi:10.1007/jhep03(2020)160
[477] Niarchos, V.; Papageorgakis, C.; Pomoni, E., Type-B anomaly matching and the 6D (2, 0) theory, J. High Energy Phys. (2020) · Zbl 1436.83089 · doi:10.1007/jhep04(2020)048
[478] Desrosiers, P.; Lapointe, L.; Mathieu, P., Super-Whittaker vector at c = 3/2, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1285.81056 · doi:10.1088/1751-8113/47/5/055202
[479] Poghosyan, H., The light asymptotic limit of conformal blocks in \(####\) super Liouville field theory, J. High Energy Phys. (2017) · Zbl 1382.81193 · doi:10.1007/JHEP09(2017)062
[480] Cirafici, M.; Szabo, R. J., Curve counting, instantons and McKay correspondences, J. Geom. Phys., 72, 54-109 (2013) · Zbl 1280.32001 · doi:10.1016/j.geomphys.2013.03.020
[481] Bruzzo, U.; Sala, F.; Szabo, R. J., quiver gauge theories on A-type ALE spaces, Lett. Math. Phys., 105, 401-445 (2015) · Zbl 1405.14031 · doi:10.1007/s11005-014-0734-x
[482] Hadasz, L.; Jaskólski, Z., Super-Liouville—double Liouville correspondence, J. High Energy Phys. (2014) · Zbl 1333.81367 · doi:10.1007/jhep05(2014)124
[483] Hadasz, L.; Jaskólski, Z.; Dobrev, V., On the Relation Between an N = 1 Supersymmetric Liouville Field Theory and a Pair of Non-SUSY Liouville Fields, 405-413 (2014) · Zbl 1317.81230
[484] Jaskolski, Z.; Suchanek, P., Non-rational su(2) cosets and Liouville field theory (2015)
[485] Belavin, A. A.; Gepner, D. R., Generalized Rogers Ramanujan identities motivated by AGT correspondence, Lett. Math. Phys., 103, 1399-1407 (2013) · Zbl 1331.81252 · doi:10.1007/s11005-013-0653-2
[486] Genish, A.; Gepner, D., Nucl. Phys. B, 907, 154-179 (2016) · Zbl 1336.81078 · doi:10.1016/j.nuclphysb.2016.03.021
[487] Foda, O.; Macleod, N.; Manabe, M.; Welsh, T., WZW conformal blocks from SU(N) instanton partition functions on \(####\), Nucl. Phys. B, 956 (2020) · Zbl 1473.81111 · doi:10.1016/j.nuclphysb.2020.115038
[488] Coman, I.; Gabella, M.; Teschner, J., Line operators in theories of class \(####\), quantized moduli space of flat connections, and Toda field theory, J. High Energy Phys. (2015) · doi:10.1007/jhep10(2015)143
[489] Coman-Lohi, I., On generalisations of the AGT correspondence for non-Lagrangian theories of class S, PhD Thesis (2018), Hamburg
[490] Petkova, V. B., Topological defects in CFT, Phys. Atom. Nucl., 76, 1268-1272 (2013) · doi:10.1134/s1063778813090123
[491] Poghosyan, H.; Sarkissian, G., Comments on fusion matrix in N = 1 super Liouville field theory, Nucl. Phys. B, 909, 458-479 (2016) · Zbl 1342.81509 · doi:10.1016/j.nuclphysb.2016.05.023
[492] Aharony, O.; Seiberg, N.; Tachikawa, Y., Reading between the lines of four-dimensional gauge theories, J. High Energy Phys. (2013) · Zbl 1342.81248 · doi:10.1007/jhep08(2013)115
[493] Razamat, S. S.; Willett, B., Global properties of supersymmetric theories and the lens space, Commun. Math. Phys., 334, 661-696 (2015) · Zbl 1308.81134 · doi:10.1007/s00220-014-2111-0
[494] Tachikawa, Y., On the 6D origin of discrete additional data of 4D gauge theories, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)020
[495] Xie, D., Aspects of line operators of class S theories (2013)
[496] Amariti, A.; Klare, C.; Orlando, D.; Reffert, S., The M-theory origin of global properties of gauge theories, Nucl. Phys. B, 901, 318-337 (2015) · Zbl 1332.81123 · doi:10.1016/j.nuclphysb.2015.10.011
[497] Amariti, A.; Orlando, D.; Reffert, S., Line operators from M-branes on compact Riemann surfaces, Nucl. Phys. B, 913, 93-109 (2016) · Zbl 1349.81145 · doi:10.1016/j.nuclphysb.2016.09.012
[498] Amariti, A.; Orlando, D.; Reffert, S., Phases of N = 2 necklace quivers, Nucl. Phys. B, 926, 279-294 (2018) · Zbl 1380.81200 · doi:10.1016/j.nuclphysb.2017.11.004
[499] Etxebarria, I. G.; Heidenreich, B.; Regalado, D., IIB flux non-commutativity and the global structure of field theories, J. High Energy Phys. (2019) · Zbl 1427.81101 · doi:10.1007/jhep10(2019)169
[500] Amariti, A.; Marcassoli, A., Lens space index and global properties for 4D \(####\) models, J. High Energy Phys. (2020) · doi:10.1007/jhep02(2020)143
[501] Gomis, J.; Okuda, T.; Pestun, V., Exact results for ’t Hooft loops in gauge theories on S^4, J. High Energy Phys. (2012) · Zbl 1348.81318 · doi:10.1007/jhep05(2012)141
[502] Ito, Y.; Okuda, T.; Taki, M.; Ito, Y.; Okuda, T.; Taki, M., Line operators on \(####\) and quantization of the Hitchin moduli space. Line operators on \(####\) and quantization of the Hitchin moduli space, J. High Energy Phys.. J. High Energy Phys. (2016) · Zbl 1388.81842 · doi:10.1007/JHEP03(2016)085
[503] Brennan, T. D.; Dey, A.; Moore, G. W., On ’t Hooft defects, monopole bubbling and supersymmetric quantum mechanics, J. High Energy Phys. (2018) · Zbl 1400.81160 · doi:10.1007/jhep09(2018)014
[504] Brennan, T. D., Monopole bubbling via string theory, J. High Energy Phys. (2018) · Zbl 1404.83114 · doi:10.1007/jhep11(2018)126
[505] Brennan, T. D.; Dey, A.; Moore, G. W., ’t Hooft defects and wall crossing in SQM, J. High Energy Phys. (2019) · Zbl 1427.81162 · doi:10.1007/jhep10(2019)173
[506] Brennan, T. D., Monopoles, BPS states, and ’t Hooft defects in 4D \(####\) theories of class S, PhD Thesis (2019), Piscataway
[507] Assel, B.; Sciarappa, A., On monopole bubbling contributions to ’t Hooft loops, J. High Energy Phys. (2019) · Zbl 1416.81178 · doi:10.1007/jhep05(2019)180
[508] Hayashi, H.; Okuda, T.; Yoshida, Y., Wall-crossing and operator ordering for ’t Hooft operators in \(####\) gauge theories, J. High Energy Phys. (2019) · doi:10.1007/jhep11(2019)116
[509] Giombi, S.; Pestun, V., The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2D Yang-Mills, J. Phys. A: Math. Theor., 46 (2013) · Zbl 1267.81243 · doi:10.1088/1751-8113/46/9/095402
[510] Gaiotto, D.; Moore, G. W.; Neitzke, A., Framed BPS states, Adv. Theor. Math. Phys., 17, 241-397 (2013) · Zbl 1290.81146 · doi:10.4310/atmp.2013.v17.n2.a1
[511] Cardinali, V.; Griguolo, L.; Seminara, D., Impure aspects of supersymmetric Wilson loops, J. High Energy Phys. (2012) · Zbl 1397.81346 · doi:10.1007/jhep06(2012)167
[512] Mekareeya, N.; Rodríguez-Gómez, D., 5D gauge theories on orbifolds and 4D ‘t Hooft line indices, J. High Energy Phys. (2013) · doi:10.1007/jhep11(2013)157
[513] Fiol, B.; Torrents, G., Exact results for Wilson loops in arbitrary representations, J. High Energy Phys. (2014) · Zbl 1333.81169 · doi:10.1007/jhep01(2014)020
[514] Honda, M.; Yokoyama, D., Resumming perturbative series in the presence of monopole bubbling effects, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.025012
[515] Gimenez-Grau, A.; Liendo, P., Bootstrapping line defects in \(####\) theories, J. High Energy Phys. (2020) · doi:10.1007/jhep03(2020)121
[516] Chun, S.; Gukov, S.; Roggenkamp, D., Junctions of surface operators and categorification of quantum groups (2015)
[517] Teschner, J., Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence: I, Adv. Theor. Math. Phys., 15, 471-564 (2011) · Zbl 1442.81059 · doi:10.4310/atmp.2011.v15.n2.a6
[518] Teschner, J., Supersymmetric gauge theories, quantisation of moduli spaces of flat connections, and Liouville theory (2014)
[519] Kapustin, A.; Saulina, N., The algebra of Wilson-‘t Hooft operators, Nucl. Phys. B, 814, 327-365 (2009) · Zbl 1194.81160 · doi:10.1016/j.nuclphysb.2009.02.004
[520] Gaiotto, D.; Moore, G. W.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 163-224 (2010) · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[521] Chuang, W-y; Diaconescu, D-E; Manschot, J.; Moore, G. W.; Soibelman, Y., Geometric engineering of (framed) BPS states, Adv. Theor. Math. Phys., 18, 1063-1231 (2014) · Zbl 1365.81092 · doi:10.4310/atmp.2014.v18.n5.a3
[522] Cirafici, M., Line defects and (framed) BPS quivers, J. High Energy Phys. (2013) · Zbl 1342.81568 · doi:10.1007/jhep11(2013)141
[523] Córdova, C.; Neitzke, A., Line defects, tropicalization, and multi-centered quiver quantum mechanics, J. High Energy Phys. (2014) · Zbl 1333.81166 · doi:10.1007/jhep09(2014)099
[524] Nekrasov, N.; Rosly, A.; Shatashvili, S., Darboux coordinates, Yang-Yang functional, and gauge theory, Nucl. Phys. B, 216, 69-93 (2011) · doi:10.1016/j.nuclphysbps.2011.04.150
[525] Dimofte, T.; Gukov, S., Chern-Simons theory and S-duality, J. High Energy Phys. (2013) · Zbl 1342.81274 · doi:10.1007/jhep05(2013)109
[526] Network, D. X., Cluster coordinates and N = 2 theory: I (2012)
[527] Dimofte, T.; Gabella, M.; Goncharov, A. B., K-decompositions and 3D gauge theories, J. High Energy Phys. (2016) · Zbl 1390.81320 · doi:10.1007/jhep11(2016)151
[528] Yonekura, K., Supersymmetric gauge theory, (2, 0) theory and twisted 5D super-Yang-Mills, J. High Energy Phys. (2014) · doi:10.1007/jhep01(2014)142
[529] Gaiotto, D., Opers and TBA (2014)
[530] Nekrasov, N. A.; Rosly, A. A.; Shatashvili, S. L.; Nekrasov, N. A.; Rosly, A. A.; Shatashvili, S. L., Darboux coordinates, Yang-Yang functional, and gauge theory. Darboux coordinates, Yang-Yang functional, and gauge theory, Theor. Math. Phys.. Theor. Math. Phys., 182, 368-1234 (2015) · Zbl 1317.81201 · doi:10.1007/s11232-015-0265-3
[531] Aghaei, N.; Pawelkiewicz, M.; Teschner, J., Quantisation of super Teichmüller theory, Commun. Math. Phys., 353, 597-631 (2017) · Zbl 1367.30029 · doi:10.1007/s00220-017-2883-0
[532] Jeong, S.; Nekrasov, N., Opers, surface defects, and Yang-Yang functional, Adv. Theor. Math. Phys., 24, 1789-1916 (2020) · Zbl 1524.81101 · doi:10.4310/atmp.2020.v24.n7.a4
[533] Derryberry, R., Stacky dualities for the moduli of Higgs bundles, Adv. Math., 368 (2020) · Zbl 1458.14018 · doi:10.1016/j.aim.2020.107152
[534] Brennan, T. D.; Moore, G. W., Index-like theorems from line defect Vevs, J. High Energy Phys. (2019) · Zbl 1423.81173 · doi:10.1007/jhep09(2019)073
[535] Goncharov, A.; Shen, L., Quantum geometry of moduli spaces of local systems and representation theory (2019)
[536] Neitzke, A.; Teschner, J., Hitchin systems in \(####\) field theory, New Dualities of Supersymmetric Gauge Theories, 53-77 (2016) · Zbl 1334.81098
[537] Gaiotto, D.; Moore, G. W.; Neitzke, A., Spectral networks, Ann. Henri Poincaré, 14, 1643-1731 (2013) · Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7
[538] Longhi, P., The BPS spectrum generator in 2D-4D systems, J. High Energy Phys. (2012) · Zbl 1397.81386 · doi:10.1007/jhep11(2012)107
[539] Gaiotto, D.; Moore, G. W.; Neitzke, A., Spectral networks and snakes, Ann. Henri Poincaré, 15, 61-141 (2014) · Zbl 1301.81262 · doi:10.1007/s00023-013-0238-8
[540] Hollands, L.; Neitzke, A., Spectral networks and Fenchel-Nielsen coordinates, Lett. Math. Phys., 106, 811-877 (2016) · Zbl 1345.32020 · doi:10.1007/s11005-016-0842-x
[541] Saulina, N., Spectral networks and higher web-like structures (2014)
[542] Gabella, M., Quantum Holonomies from spectral networks and framed BPS states, Commun. Math. Phys., 351, 563-598 (2017) · Zbl 1369.81085 · doi:10.1007/s00220-016-2729-1
[543] Longhi, P., Wall crossing invariants from spectral networks, Ann. Henri Poincaré, 19, 775-842 (2018) · Zbl 1394.81149 · doi:10.1007/s00023-017-0635-5
[544] Eager, R.; Selmani, S. A.; Walcher, J., Exponential networks and representations of quivers, J. High Energy Phys. (2017) · Zbl 1381.81096 · doi:10.1007/jhep08(2017)063
[545] Gabella, M.; Longhi, P.; Park, C. Y.; Yamazaki, M., BPS graphs: from spectral networks to BPS quivers, J. High Energy Phys. (2017) · Zbl 1380.81399 · doi:10.1007/jhep07(2017)032
[546] Hollands, L.; Kidwai, O., Higher length-twist coordinates, generalized Heun’s opers, and twisted superpotentials, Adv. Theor. Math. Phys., 22, 1713-1822 (2018) · Zbl 07430956 · doi:10.4310/atmp.2018.v22.n7.a2
[547] Gabella, M., BPS spectra from BPS graphs (2017)
[548] Gang, D.; Longhi, P.; Yamazaki, M., S duality and framed BPS states via BPS graphs, Adv. Theor. Math. Phys., 23, 1361-1410 (2019) · Zbl 1480.81101 · doi:10.4310/atmp.2019.v23.n5.a4
[549] Hollands, L.; Neitzke, A., Exact WKB and abelianization for the T_3 equation, Commun. Math. Phys., 380, 131-186 (2020) · Zbl 1455.81025 · doi:10.1007/s00220-020-03875-1
[550] Cirafici, M.; Del Zotto, M., Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states: I (2017)
[551] Cirafici, M., Quivers, line defects and framed BPS invariants, Ann. Henri Poincaré, 19, 1-70 (2018) · Zbl 1384.81071 · doi:10.1007/s00023-017-0611-0
[552] Cirafici, M., Quantum line defects and refined BPS spectra, Lett. Math. Phys., 110, 501-531 (2019) · Zbl 1453.14132 · doi:10.1007/s11005-019-01226-3
[553] Gukov, S.; Witten, E., Gauge theory, ramification, and the geometric Langlands program (2006) · Zbl 1237.14024
[554] Gukov, S.; Witten, E., Rigid surface operators, Adv. Theor. Math. Phys., 14, 87-178 (2010) · Zbl 1203.81114 · doi:10.4310/atmp.2010.v14.n1.a3
[555] Gadde, A.; Gukov, S.; Putrov, P., Duality defects (2014)
[556] Assel, B.; Schäfer-Nameki, S., Six-dimensional origin of \(####\) SYM with duality defects, J. High Energy Phys. (2016) · Zbl 1390.81560 · doi:10.1007/JHEP12(2016)058
[557] Gutperle, M.; Vicino, M., Holographic surface defects in D = 5, N = 4 gauged supergravity, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.066016
[558] Gaiotto, D.; Rastelli, L.; Razamat, S. S., Bootstrapping the superconformal index with surface defects, J. High Energy Phys. (2013) · Zbl 1342.81490 · doi:10.1007/jhep01(2013)022
[559] Gerchkovitz, E.; Karasik, A., New vortex-string worldsheet theories from supersymmetric localization, J. High Energy Phys. (2019) · Zbl 1414.81239 · doi:10.1007/jhep03(2019)090
[560] Karasik, A., Vortex-strings in \(####\) quiver U(1) theories, J. High Energy Phys. (2018) · doi:10.1007/jhep12(2018)129
[561] Poghosyan, G.; Poghossian, R., VEV of Baxter’s Q-operator in N = 2 gauge theory and the BPZ differential equation, J. High Energy Phys. (2016) · Zbl 1390.81535 · doi:10.1007/jhep11(2016)058
[562] Mori, H.; Sugimoto, Y., Surface operators from M-strings, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.026001
[563] Benini, F.; Cremonesi, S., Partition functions of \(####\) gauge theories on S^2 and vortices, Commun. Math. Phys., 334, 1483-1527 (2015) · Zbl 1308.81131 · doi:10.1007/s00220-014-2112-z
[564] Doroud, N.; Gomis, J.; Le Floch, B.; Lee, S., Exact results in D = 2 supersymmetric gauge theories, J. High Energy Phys. (2013) · Zbl 1342.81573 · doi:10.1007/jhep05(2013)093
[565] Gaiotto, D.; Gukov, S.; Seiberg, N., Surface defects and resolvents, J. High Energy Phys. (2013) · doi:10.1007/jhep09(2013)070
[566] Honda, D.; Okuda, T., Exact results for boundaries and domain walls in 2D supersymmetric theories, J. High Energy Phys. (2015) · Zbl 1388.81218 · doi:10.1007/jhep09(2015)140
[567] Chen, H-Y; Chen, H-Y, Heterotic surface defects and dualities from 2D/4D indices, J. High Energy Phys. (2014) · doi:10.1007/jhep10(2014)004
[568] Lamy-Poirier, J., Localization of a supersymmetric gauge theory in the presence of a surface defect (2014)
[569] Gaiotto, D.; Kim, H-C, Surface defects and instanton partition functions, J. High Energy Phys. (2016) · Zbl 1390.81594 · doi:10.1007/jhep10(2016)012
[570] Bullimore, M.; Kim, H-C, The superconformal index of the (2, 0) theory with defects, J. High Energy Phys. (2015) · Zbl 1388.81139 · doi:10.1007/jhep05(2015)048
[571] Pan, Y.; Peelaers, W., Intersecting surface defects and instanton partition functions, J. High Energy Phys. (2017) · Zbl 1380.81411 · doi:10.1007/jhep07(2017)073
[572] Lamy-Poirier, J., Exact results in supersymmetric gauge theory, PhD Thesis (2016)
[573] Ashok, S. K.; Billo, M.; Dell’Aquila, E.; Frau, M.; John, R. R.; Lerda, A., Modular and duality properties of surface operators in N = 2* gauge theories, J. High Energy Phys. (2017) · Zbl 1380.81261 · doi:10.1007/JHEP07(2017)068
[574] Gorsky, A.; Le Floch, B.; Milekhin, A.; Sopenko, N., Surface defects and instanton-vortex interaction, Nucl. Phys. B, 920, 122-156 (2017) · Zbl 1364.81255 · doi:10.1016/j.nuclphysb.2017.04.010
[575] Hayling, J.; Niarchos, V.; Papageorgakis, C., Deconstructing defects, J. High Energy Phys. (2019) · Zbl 1411.81161 · doi:10.1007/jhep02(2019)067
[576] Baek, J-H, Chiral rings for surface operators in 4D and 5D SQCD, J. High Energy Phys. (2019) · Zbl 1409.81139 · doi:10.1007/jhep01(2019)159
[577] Nieri, F.; Pasquetti, S.; Passerini, F.; Torrielli, A., 5D partition functions, q-Virasoro systems and integrable spin-chains, J. High Energy Phys. (2014) · doi:10.1007/jhep12(2014)040
[578] Bullimore, M.; Fluder, M.; Hollands, L.; Richmond, P., The superconformal index and an elliptic algebra of surface defects, J. High Energy Phys. (2014) · doi:10.1007/jhep10(2014)062
[579] Nazzal, B.; Razamat, S. S., Surface defects in E-string compactifications and the van Diejen model, Symmetry, Integrability Geometry Methods Appl., 14, 036 (2018) · Zbl 1388.81589 · doi:10.3842/sigma.2018.036
[580] Nishinaka, T.; Sasa, S.; Zhu, R-D, On the correspondence between surface operators in Argyres-Douglas theories and modules of chiral algebra, J. High Energy Phys. (2019) · Zbl 1414.81248 · doi:10.1007/jhep03(2019)091
[581] Gaiotto, D.; Moore, G. W.; Neitzke, A., Wall-crossing in coupled 2D-4D systems, J. High Energy Phys. (2012) · Zbl 1397.81364 · doi:10.1007/jhep12(2012)082
[582] Del Zotto, M.; Heckman, J. J.; Park, D. S.; Rudelius, T., On the defect group of a 6D SCFT, Lett. Math. Phys., 106, 765-786 (2016) · Zbl 1372.32034 · doi:10.1007/s11005-016-0839-5
[583] Longhi, P.; Park, C. Y., ADE spectral networks, J. High Energy Phys. (2016) · Zbl 1390.81123 · doi:10.1007/jhep08(2016)087
[584] Jeong, S., Splitting of surface defect partition functions and integrable systems, Nucl. Phys. B, 938, 775-806 (2019) · Zbl 1405.81076 · doi:10.1016/j.nuclphysb.2018.12.007
[585] Nedelin, A.; Pasquetti, S.; Zenkevich, Y., T[SU(N)] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences, J. High Energy Phys. (2019) · doi:10.1007/jhep02(2019)176
[586] Del Zotto, M.; Lockhart, G., Universal features of BPS strings in six-dimensional SCFTs, J. High Energy Phys. (2018) · Zbl 1396.81173 · doi:10.1007/jhep08(2018)173
[587] Rodgers, R., Holographic entanglement entropy from probe M-theory branes, J. High Energy Phys. (2019) · Zbl 1414.81187 · doi:10.1007/jhep03(2019)092
[588] Estes, J.; Krym, D.; O’Bannon, A.; Robinson, B.; Rodgers, R., Wilson surface central charge from holographic entanglement entropy, J. High Energy Phys. (2019) · Zbl 1416.81149 · doi:10.1007/jhep05(2019)032
[589] Jensen, K.; O’Bannon, A.; Robinson, B.; Rodgers, R., From the Weyl anomaly to entropy of two-dimensional boundaries and defects, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.241602
[590] Fluder, M.; Longhi, P., An infrared bootstrap of the Schur index with surface defects, J. High Energy Phys. (2019) · Zbl 1423.81176 · doi:10.1007/jhep09(2019)062
[591] Yamada, Y., A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1208.81150 · doi:10.1088/1751-8113/44/5/055403
[592] Gadde, A.; Gukov, S., 2D index and surface operators, J. High Energy Phys. (2014) · Zbl 1333.81399 · doi:10.1007/jhep03(2014)080
[593] Bullimore, M.; Kim, H-C; Koroteev, P., Defects and quantum Seiberg-Witten geometry, J. High Energy Phys. (2015) · Zbl 1388.81788 · doi:10.1007/jhep05(2015)095
[594] He, W., A new treatment for some periodic schrödinger operators: II. The wave function, Commun. Theor. Phys., 69, 645-654 (2018) · Zbl 1514.81114 · doi:10.1088/0253-6102/69/6/645
[595] Mori, H., M-theory perspectives on codimension-2 defects, PhD Thesis (2016)
[596] Haouzi, N.; Schmid, C., Little string defects and Bala-Carter theory (2016)
[597] Rajan, R., John non-perturbative aspects of supersymmetric gauge theories with surface operators, PhD Thesis (2017)
[598] Bonelli, G.; Fasola, N.; Tanzini, A., Defects, nested instantons and comet-shaped quivers, Lett. Math. Phys., 111, 34 (2021) · Zbl 1472.81236 · doi:10.1007/s11005-021-01366-5
[599] Biquard, O., Sur Les Fibrés paraboliques sur Une surface complexe, J. Math. Soc., 53, 302-316 (1996) · Zbl 0862.53025 · doi:10.1112/jlms/53.2.302
[600] Giribet, G., On AGT description of N = 2 SCFT with N(f) = 4, J. High Energy Phys. (2010) · Zbl 1269.81127 · doi:10.1007/JHEP01(2010)097
[601] Frenkel, E.; Gukov, S.; Teschner, J., Surface operators and separation of variables, J. High Energy Phys. (2016) · Zbl 1388.81811 · doi:10.1007/jhep01(2016)179
[602] Bak, D.; Gutperle, M.; Hirano, S., A dilatonic deformation of AdS_5 and its field theory dual, J. High Energy Phys. (2003) · doi:10.1088/1126-6708/2003/05/072
[603] Clark, A. B.; Freedman, D. Z.; Karch, A.; Schnabl, M., Dual of the Janus solution: an interface conformal field theory, Phys. Rev. D, 71 (2005) · doi:10.1103/physrevd.71.066003
[604] Clark, A. B.; Karch, A., Super Janus, J. High Energy Phys. (2005) · doi:10.1088/1126-6708/2005/10/094
[605] D’Hoker, E.; Estes, J.; Gutperle, M., Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B, 753, 16-41 (2006) · Zbl 1215.81106 · doi:10.1016/j.nuclphysb.2006.07.001
[606] D’Hoker, E.; Estes, J.; Gutperle, M., Exact half-BPS type IIB interface solutions: I. Local solution and supersymmetric Janus, J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/06/021
[607] Gaiotto, D.; Witten, E., Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, J. High Energy Phys. (2010) · Zbl 1290.81065 · doi:10.1007/JHEP06(2010)097
[608] Gaiotto, D.; Witten, E., S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys., 13, 721-896 (2009) · Zbl 1206.81082 · doi:10.4310/atmp.2009.v13.n3.a5
[609] Gadde, A.; Gukov, S.; Putrov, P., Walls, lines, and spectral dualities in 3D gauge theories, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)047
[610] Gang, D.; Koh, E.; Lee, S.; Park, J., Superconformal index and 3D-3D correspondence for mapping cylinder/torus, J. High Energy Phys. (2014) · doi:10.1007/jhep01(2014)063
[611] Ponsot, B.; Teschner, J., Liouville bootstrap via harmonic analysis on a noncompact quantum group (1999)
[612] Ponsot, B.; Teschner, J., Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U(q)(sl(2, R)), Commun. Math. Phys., 224, 613-655 (2001) · Zbl 1010.33013 · doi:10.1007/pl00005590
[613] Benini, F.; Benvenuti, S.; Pasquetti, S., SUSY monopole potentials in 2 + 1 dimensions, J. High Energy Phys. (2017) · Zbl 1381.81129 · doi:10.1007/JHEP08(2017)086
[614] Garozzo, I.; Mekareeya, N.; Sacchi, M., Duality walls in the 4D \(#### = 2\) SU(N) gauge theory with 2N flavours, J. High Energy Phys. (2019) · Zbl 1429.81052 · doi:10.1007/JHEP11(2019)053
[615] Gaiotto, D.; Razamat, S. S., N = 1 theories of class S_k, J. High Energy Phys. (2015) · Zbl 1388.81815 · doi:10.1007/JHEP07(2015)073
[616] Gaiotto, D.; Kim, H-C, Duality walls and defects in 5D N = 1 theories, J. High Energy Phys. (2017) · Zbl 1373.81351 · doi:10.1007/JHEP01(2017)019
[617] Gava, E.; Narain, K. S.; Muteeb, M. N.; Giraldo-Rivera, V. I., N = 2 gauge theories on the hemisphere HS^4, Nucl. Phys. B, 920, 256-297 (2017) · Zbl 1364.81184 · doi:10.1016/j.nuclphysb.2017.04.007
[618] Awata, H.; Yamada, Y., Five-dimensional AGT relation and the deformed beta-ensemble, Prog. Theor. Phys., 124, 227-262 (2010) · Zbl 1201.81074 · doi:10.1143/ptp.124.227
[619] Yanagida, S., Five-dimensional SU(2) AGT conjecture and recursive formula of deformed Gaiotto state, J. Math. Phys., 51 (2010) · Zbl 1314.81147 · doi:10.1063/1.3505826
[620] Taki, M., On AGT-W conjecture and q-deformed W-algebra (2014)
[621] Frenkel, E.; Reshetikhin, N., Quantum affine algebras and deformations of the Virasoro and W-algebras, Commun. Math. Phys., 178, 237-264 (1996) · Zbl 0869.17014 · doi:10.1007/bf02104917
[622] Shiraishi, J. I.; Kubo, H.; Awata, H.; Odake, S., A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys., 38, 33-51 (1996) · Zbl 0867.17010 · doi:10.1007/bf00398297
[623] Feigin, B.; Frenkel, E., Quantum W algebras and elliptic algebras, Commun. Math. Phys., 178, 653-677 (1996) · Zbl 0871.17007 · doi:10.1007/bf02108819
[624] Awata, H.; Kubo, H.; Odake, S.; Shiraishi, J., Quantum W(N) algebras and Macdonald polynomials, Commun. Math. Phys., 179, 401-415 (1996) · Zbl 0873.17016 · doi:10.1007/bf02102595
[625] Kimura, T.; Pestun, V., Quiver W-algebras, Lett. Math. Phys., 108, 1351-1381 (2018) · Zbl 1388.81850 · doi:10.1007/s11005-018-1072-1
[626] Itoyama, H.; Oota, T.; Yoshioka, R., q-vertex operator from 5D Nekrasov function, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1362.82022 · doi:10.1088/1751-8113/49/34/345201
[627] Pasquetti, S.; Sacchi, M., From 3D dualities to 2D free field correlators and back, J. High Energy Phys. (2019) · Zbl 1429.81093 · doi:10.1007/jhep11(2019)081
[628] Carlsson, E.; Nekrasov, N.; Okounkov, A., Five dimensional gauge theories and vertex operators, Moscow Math. J., 14, 39-61 (2014) · Zbl 1303.14046 · doi:10.17323/1609-4514-2014-14-1-39-61
[629] Zenkevich, Y., Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions, J. High Energy Phys. (2015) · Zbl 1388.81161 · doi:10.1007/jhep05(2015)131
[630] Katz, S.; Mayr, P.; Vafa, C., Mirror symmetry and exact solution of 4D N = 2 gauge theories: 1, Adv. Theor. Math. Phys., 1, 53-114 (1998) · Zbl 0912.32016 · doi:10.4310/ATMP.1997.v1.n1.a2
[631] Bao, L.; Pomoni, E.; Taki, M.; Yagi, F., M5-branes, toric diagrams and gauge theory duality, J. High Energy Phys. (2012) · Zbl 1348.81397 · doi:10.1007/jhep04(2012)105
[632] Benvenuti, S.; Bonelli, G.; Ronzani, M.; Tanzini, A., Symmetry enhancements via 5D instantons, qW-algebrae and (1, 0) superconformal index, J. High Energy Phys. (2016) · Zbl 1390.81409 · doi:10.1007/JHEP09(2016)053
[633] Marshakov, A.; Semenyakin, M., Cluster integrable systems and spin chains, J. High Energy Phys. (2019) · Zbl 1427.81173 · doi:10.1007/jhep10(2019)100
[634] Kimura, T., Double quantization of Seiberg-Witten geometry and W-algebras, Proc. Symp. Pure Math., 100, 405-431 (2018) · Zbl 1452.81150 · doi:10.1090/pspum/100/01762
[635] Itoyama, H.; Oota, T.; Yoshioka, R., q-Virasoro/W algebra at Root of Unity and parafermions, Nucl. Phys. B, 889, 25-35 (2014) · Zbl 1326.81179 · doi:10.1016/j.nuclphysb.2014.10.006
[636] Jimbo, M.; Nagoya, H.; Sakai, H., CFT approach to the q-Painlevé VI equation, J. Integr. Syst., 2 (2017) · Zbl 1400.39008 · doi:10.1093/integr/xyx009
[637] Mironov, A.; Morozov, A., q-Painlevé equation from Virasoro constraints, Phys. Lett. B, 785, 207-210 (2018) · Zbl 1398.81220 · doi:10.1016/j.physletb.2018.08.046
[638] Matsuhira, Y.; Nagoya, H., Combinatorial expressions for the tau functions of q-Painleve V and III equations, Symmetry, Integrability Geometry Methods Appl., 15, 074 (2019) · Zbl 1423.39009 · doi:10.3842/SIGMA.2019.074
[639] Mironov, A.; Morozov, A.; Zakirova, Z., Discrete Painlevé equation, Miwa variables and string equation in 5D matrix models, J. High Energy Phys. (2019) · Zbl 1427.83110 · doi:10.1007/jhep10(2019)227
[640] Hosomichi, K.; Seong, R-K; Terashima, S., Supersymmetric gauge theories on the five-sphere, Nucl. Phys. B, 865, 376-396 (2012) · Zbl 1262.81110 · doi:10.1016/j.nuclphysb.2012.08.007
[641] Nedelin, A.; Nieri, F.; Zabzine, M., q-Virasoro modular double and 3D partition functions, Commun. Math. Phys., 353, 1059-1102 (2017) · Zbl 1375.81180 · doi:10.1007/s00220-017-2882-1
[642] Zenkevich, Y., Higgsed network calculus, J. High Energy Phys. (2021) · doi:10.1007/jhep08(2021)149
[643] Haouzi, N.; Kozçaz, C., Supersymmetric Wilson loops, instantons, and deformed W-algebras (2019)
[644] Aganagic, M.; Frenkel, E.; Okounkov, A., Quantum q-Langlands correspondence, Trans. Moscow Math. Soc., 79, 1-83 (2018) · Zbl 1422.22021 · doi:10.1090/mosc/278
[645] Nieri, F.; Zenkevich, Y., Quiver W_E1,E2 algebras of 4D N = 2 gauge theories, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81291 · doi:10.1088/1751-8121/ab9275
[646] Kim, H-C; Kim, S.; Kim, S-S; Lee, K., The general M5-brane superconformal index (2013)
[647] Nieri, F.; Pasquetti, S., Factorisation and holomorphic blocks in 4D, J. High Energy Phys. (2015) · Zbl 1388.81360 · doi:10.1007/jhep11(2015)155
[648] Iqbal, A.; Kozcaz, C.; Yau, S-T, Elliptic Virasoro conformal blocks (2015)
[649] Nieri, F., An elliptic Virasoro symmetry in 6D, Lett. Math. Phys., 107, 2147-2187 (2017) · Zbl 1430.81061 · doi:10.1007/s11005-017-0986-3
[650] Mironov, A.; Morozov, A.; Zenkevich, Y., Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett. B, 762, 196-208 (2016) · Zbl 1390.81216 · doi:10.1016/j.physletb.2016.09.033
[651] Awata, H.; Kanno, H.; Matsumoto, T.; Mironov, A.; Morozov, A.; Morozov, A.; Ohkubo, Y.; Zenkevich, Y., Explicit examples of DIM constraints for network matrix models, J. High Energy Phys. (2016) · Zbl 1390.81206 · doi:10.1007/jhep07(2016)103
[652] Tan, M-C, Higher AGT correspondences, \(####\)-algebras, and higher quantum geometric Langlands duality from M-theory, Adv. Theor. Math. Phys., 22, 429-507 (2018) · Zbl 1401.83026 · doi:10.4310/atmp.2018.v22.n2.a4
[653] Kim, S.; Lee, K., Indices for six dimensional superconformal field theories, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.81107 · doi:10.1088/1751-8121/aa5cbf
[654] Kimura, T.; Pestun, V., Quiver elliptic W-algebras, Lett. Math. Phys., 108, 1383-1405 (2018) · Zbl 1388.81851 · doi:10.1007/s11005-018-1073-0
[655] Awata, H.; Kanno, H.; Mironov, A.; Morozov, A.; Morozov, A.; Ohkubo, Y.; Zenkevich, Y., Anomaly in RTT relation for DIM algebra and network matrix models, Nucl. Phys. B, 918, 358-385 (2017) · Zbl 1360.81261 · doi:10.1016/j.nuclphysb.2017.03.003
[656] Foda, O.; Wu, J-F, A Macdonald refined topological vertex, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1390.81507 · doi:10.1088/1751-8121/aa7605
[657] Lodin, R.; Nieri, F.; Zabzine, M., Elliptic modular double and 4D partition functions, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1387.81267 · doi:10.1088/1751-8121/aa9a2d
[658] Poggi, M., Elliptic genus derivation of 4D holomorphic blocks, J. High Energy Phys. (2018) · Zbl 1388.81883 · doi:10.1007/jhep03(2018)035
[659] Awata, H.; Kanno, H.; Mironov, A.; Morozov, A.; Suetake, K.; Zenkevich, Y., (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces, J. High Energy Phys. (2018) · Zbl 1388.81623 · doi:10.1007/jhep03(2018)192
[660] Foda, O.; Manabe, M., Macdonald topological vertices and brane condensates, Nucl. Phys. B, 936, 448-471 (2018) · Zbl 1400.81163 · doi:10.1016/j.nuclphysb.2018.10.001
[661] Rastelli, L.; Razamat, S. S.; Teschner, J., The superconformal index of theories of class \(####\), New Dualities of Supersymmetric Gauge Theories, 261-305 (2016) · Zbl 1334.81094
[662] Rastelli, L.; Razamat, S. S., The supersymmetric index in four dimensions, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.81211 · doi:10.1088/1751-8121/aa76a6
[663] Gadde, A., Lectures on the superconformal index (2020)
[664] Gadde, A.; Rastelli, L.; Razamat, S. S.; Yan, W., The superconformal index of the E_6 SCFT, J. High Energy Phys. (2010) · Zbl 1290.81064 · doi:10.1007/jhep08(2010)107
[665] Gadde, A.; Pomoni, E.; Rastelli, L.; Razamat, S. S., S-duality and 2D topological QFT, J. High Energy Phys. (2010) · Zbl 1271.81157 · doi:10.1007/jhep03(2010)032
[666] Gaiotto, D.; Razamat, S. S., Exceptional indices, J. High Energy Phys. (2012) · Zbl 1348.81408 · doi:10.1007/jhep05(2012)145
[667] Gadde, A.; Rastelli, L.; Razamat, S. S.; Yan, W., Gauge theories and Macdonald polynomials, Commun. Math. Phys., 319, 147-193 (2013) · Zbl 1268.81114 · doi:10.1007/s00220-012-1607-8
[668] Crichigno, P. M.; Jain, D.; Willett, B., 5D partition functions with a twist, J. High Energy Phys. (2018) · Zbl 1404.81223 · doi:10.1007/jhep11(2018)058
[669] Kawano, T.; Matsumiya, N., 5D SYM on 3D sphere and 2D YM, Phys. Lett. B, 716, 450-453 (2012) · doi:10.1016/j.physletb.2012.08.055
[670] Fukuda, Y.; Kawano, T.; Matsumiya, N., 5D SYM and 2D q-deformed YM, Nucl. Phys. B, 869, 493-522 (2013) · Zbl 1262.81075 · doi:10.1016/j.nuclphysb.2012.12.017
[671] Kawano, T.; Matsumiya, N., 5D SYM on 3D deformed spheres, Nucl. Phys. B, 898, 456-562 (2015) · Zbl 1329.81333 · doi:10.1016/j.nuclphysb.2015.07.018
[672] Gang, D.; Koh, E.; Lee, K., Line operator index on S^1 × S^3, J. High Energy Phys. (2012) · Zbl 1348.81409 · doi:10.1007/JHEP05(2012)007
[673] Gang, D.; Koh, E.; Lee, K., Superconformal index with duality domain wall, J. High Energy Phys. (2012) · Zbl 1397.81366 · doi:10.1007/jhep10(2012)187
[674] Maruyoshi, K.; Yagi, J., Surface defects as transfer matrices, Prog. Theor. Exp. Phys., 2016 (2016) · Zbl 1361.81150 · doi:10.1093/ptep/ptw151
[675] Benini, F.; Nishioka, T.; Yamazaki, M., 4D index to 3D index and 2D TQFT, Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.065015
[676] Alday, L. F.; Bullimore, M.; Fluder, M., On S-duality of the superconformal index on lens spaces and 2D TQFT, J. High Energy Phys. (2013) · Zbl 1342.81472 · doi:10.1007/jhep05(2013)122
[677] Gukov, S.; Pei, D.; Yan, W.; Ye, K., Equivariant Verlinde algebra from superconformal index and Argyres-Seiberg duality, Commun. Math. Phys., 357, 1215-1251 (2018) · Zbl 1391.81178 · doi:10.1007/s00220-017-3074-8
[678] Tachikawa, Y., 4D partition function on S^1 × S^3 and 2D Yang-Mills with nonzero area, Prog. Theor. Exp. Phys., 2013 (2013) · Zbl 07406580 · doi:10.1093/ptep/pts048
[679] Mekareeya, N.; Song, J.; Tachikawa, Y., 2D TQFT structure of the superconformal indices with outer-automorphism twists, J. High Energy Phys. (2013) · Zbl 1342.81522 · doi:10.1007/jhep03(2013)171
[680] Lemos, M.; Peelaers, W.; Rastelli, L., The superconformal index of class S theories of type D, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)120
[681] Buican, M.; Nishinaka, T., On the superconformal index of Argyres-Douglas theories, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.81264 · doi:10.1088/1751-8113/49/1/015401
[682] Buican, M.; Nishinaka, T., Argyres-Douglas theories, S^1 reductions, and topological symmetries, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.81481 · doi:10.1088/1751-8113/49/4/045401
[683] Buican, M.; Nishinaka, T., Argyres-douglas theories, the Macdonald index, and an RG inequality, J. High Energy Phys. (2016) · Zbl 1388.81787 · doi:10.1007/jhep02(2016)159
[684] Song, J., Superconformal indices of generalized Argyres-Douglas theories from 2D TQFT, J. High Energy Phys. (2016) · Zbl 1388.81701 · doi:10.1007/jhep02(2016)045
[685] Buican, M.; Nishinaka, T., On irregular singularity wave functions and superconformal indices, J. High Energy Phys. (2017) · Zbl 1382.81137 · doi:10.1007/jhep09(2017)066
[686] Dimofte, T.; Teschner, J., 3D superconformal theories from three-manifolds, New Dualities of Supersymmetric Gauge Theories, 339-373 (2016) · Zbl 1334.81091
[687] Pei, D., 3D-3D correspondence for Seifert manifolds, PhD Thesis (2016)
[688] Cecotti, S.; Cordova, C.; Vafa, C., Braids, walls, and mirrors (2011)
[689] Dimofte, T.; Gaiotto, D.; Gukov, S., Three-manifolds and 3D indices, Adv. Theor. Math. Phys., 17, 975-1076 (2013) · Zbl 1297.81149 · doi:10.4310/atmp.2013.v17.n5.a3
[690] Kashaev, R.; Luo, F.; Vartanov, G., A TQFT of Turaev-Viro type on shaped triangulations, Ann. Henri Poincaré, 17, 1109-1143 (2016) · Zbl 1337.81105 · doi:10.1007/s00023-015-0427-8
[691] Beem, C.; Dimofte, T.; Pasquetti, S., Holomorphic blocks in three dimensions, J. High Energy Phys. (2014) · Zbl 1333.81309 · doi:10.1007/jhep12(2014)177
[692] Cordova, C.; Espahbodi, S.; Haghighat, B.; Rastogi, A.; Vafa, C., Tangles, generalized Reidemeister moves, and three-dimensional mirror symmetry, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)014
[693] Terashima, Y.; Yamazaki, M., 3D N = 2 theories from cluster algebras, Prog. Theor. Exp. Phys., 2014 (2014) · Zbl 1331.81204 · doi:10.1093/ptep/ptt115
[694] Fuji, H.; Sułkowski, P.; Donagi, R.; Katz, S.; Klemm, A.; Morrison, D. R., Super-A-polynomial, vol 90, 277-303 (2015) · Zbl 1356.81190
[695] Garoufalidis, S.; Hodgson, C. D.; Rubinstein, J. H.; Segerman, H., One-efficient triangulations and the index of a cusped hyperbolic three-manifold (2013)
[696] Fukui, F., Notes on holonomy matrices of hyperbolic three-manifolds with cusps (2013)
[697] Dimofte, T.; van der Veen, R., A spectral perspective on Neumann-Zagier (2014)
[698] Chung, H-J; Dimofte, T.; Gukov, S.; Sułkowski, P., 3D-3D correspondence revisited, J. High Energy Phys. (2016) · Zbl 1388.57009 · doi:10.1007/jhep04(2016)140
[699] Chung, H. J., Three-Dimensional superconformal field theory, Chern-Simons theorv, and their correspondence, PhD Thesis (2014)
[700] Luo, T.; Yagi, J.; Zhao, Q., Ω-deformation of B-twisted gauge theories and the 3D-3D correspondence, J. High Energy Phys. (2015) · doi:10.1007/jhep02(2015)047
[701] Gukov, S.; Pei, D., Equivariant Verlinde formula from fivebranes and vortices, Commun. Math. Phys., 355, 1-50 (2017) · Zbl 1431.81119 · doi:10.1007/s00220-017-2931-9
[702] Pei, D.; Ye, K., A 3D-3D appetizer, J. High Energy Phys. (2016) · Zbl 1390.81617 · doi:10.1007/jhep11(2016)008
[703] Gang, D.; Kim, N.; Romo, M.; Yamazaki, M., Taming supersymmetric defects in 3D-3D correspondence, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1344.81119 · doi:10.1088/1751-8113/49/30/30lt02
[704] Gang, D.; Kim, N.; Romo, M.; Yamazaki, M., Aspects of defects in 3D-3D correspondence, J. High Energy Phys. (2016) · Zbl 1390.81428 · doi:10.1007/jhep10(2016)062
[705] Gukov, S.; Nawata, S.; Saberi, I.; Stošić, M.; Sułkowski, P., Sequencing BPS spectra, J. High Energy Phys. (2016) · Zbl 1388.81823 · doi:10.1007/jhep03(2016)004
[706] Gukov, S.; Putrov, P.; Vafa, C., Fivebranes and three-manifold homology, J. High Energy Phys. (2017) · doi:10.1007/jhep07(2017)071
[707] Blau, M.; Thompson, G., Chern-Simons theory with complex gauge group on Seifert fibred three-manifolds (2016)
[708] Garoufalidis, S.; Hodgson, C.; Hoffman, N.; Rubinstein, H., The 3D-index and normal surfaces (2016) · Zbl 1378.57030
[709] Bae, J-B; Gang, D.; Lee, J., 3D \(####\) minimal SCFTs from wrapped M5-branes, J. High Energy Phys. (2017) · doi:10.1007/jhep08(2017)118
[710] Gukov, S.; Pei, D.; Putrov, P.; Vafa, C., BPS spectra and three-manifold invariants, J. Knot Theory Ramifications, 29, 2040003 (2020) · Zbl 1448.57020 · doi:10.1142/s0218216520400039
[711] Alday, L. F.; Genolini, P. B.; Bullimore, M.; van Loon, M., Refined 3D-3D correspondence, J. High Energy Phys. (2017) · Zbl 1378.81133 · doi:10.1007/jhep04(2017)170
[712] Gang, D.; Tachikawa, Y.; Yonekura, K., Smallest 3D hyperbolic manifolds via simple 3D theories, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.061701
[713] Bozkurt, D. N.; Gahramanov, I., Pentagon identities arising in supersymmetric gauge theory computations, Teor. Mat. Fiz., 198, 215-224 (2019) · Zbl 1421.81084 · doi:10.1134/s0040577919020028
[714] Gang, D.; Yonekura, K., Symmetry enhancement and closing of knots in 3D/3D correspondence, J. High Energy Phys., 2018, 145 (2018) · Zbl 1395.81217 · doi:10.1007/jhep07(2018)145
[715] Eckhard, J.; Schäfer-Nameki, S.; Wong, J-M, An \(#### 3\) D-3D correspondence, J. High Energy Phys. (2018) · Zbl 1395.81252 · doi:10.1007/JHEP07(2018)052
[716] Kanno, H.; Sugiyama, K.; Yoshida, Y., Equivariant U(N) Verlinde algebra from Bethe/gauge correspondence, J. High Energy Phys. (2019) · Zbl 1411.81193 · doi:10.1007/jhep02(2019)097
[717] Gang, D.; Kim, N., Large N twisted partition functions in 3D-3D correspondence and holography, Phys. Rev. D, 99 (2019) · doi:10.1103/physrevd.99.021901
[718] Cheng, M. C N.; Chun, S.; Ferrari, F.; Gukov, S.; Harrison, S. M., 3D modularity, J. High Energy Phys. (2019) · Zbl 1427.81118 · doi:10.1007/jhep10(2019)010
[719] Gang, D.; Kim, N.; Pando Zayas, L. A., Precision microstate counting for the entropy of wrapped M5-branes, J. High Energy Phys. (2020) · Zbl 1435.81161 · doi:10.1007/jhep03(2020)164
[720] Bae, J-B; Gang, D.; Lee, K., Magnetically charged AdS_5 black holes from class \(####\) theories on hyperbolic three-manifolds, J. High Energy Phys. (2020) · doi:10.1007/jhep02(2020)158
[721] Bobev, N.; Crichigno, P. M., Universal spinning black holes and theories of class R, J. High Energy Phys. (2019) · Zbl 1431.83154 · doi:10.1007/JHEP12(2019)054
[722] Benini, F.; Gang, D.; Pando Zayas, L. A., Rotating black hole entropy from M5 branes, J. High Energy Phys. (2020) · Zbl 1435.83071 · doi:10.1007/jhep03(2020)057
[723] Ashwinkumar, M.; Tan, M-C, Unifying lattice models, links and quantum geometric Langlands via branes in string theory, Adv. Theor. Math. Phys., 24, 1681-1721 (2020) · Zbl 1527.81095 · doi:10.4310/atmp.2020.v24.n7.a1
[724] Eckhard, J.; Kim, H.; Schäfer-Nameki, S.; Willett, B., Higher-form symmetries, Bethe vacua, and the 3D-3D correspondence, J. High Energy Phys. (2020) · Zbl 1434.81125 · doi:10.1007/jhep01(2020)101
[725] Chun, S.; Gukov, S.; Park, S.; Sopenko, N., 3D-3D correspondence for mapping Tori, J. High Energy Phys. (2020) · Zbl 1454.81207 · doi:10.1007/jhep09(2020)152
[726] Gang, D.; Kim, S.; Yoon, S., Adjoint Reidemeister torsions from wrapped M5-branes (2019)
[727] Chung, H-J, Index for a model of 3D-3D correspondence for plumbed three-manifolds, Nucl. Phys. B, 965 (2021) · Zbl 1489.81053 · doi:10.1016/j.nuclphysb.2021.115361
[728] Dimofte, T.; Gukov, S.; Hollands, L., Vortex counting and Lagrangian three-manifolds, Lett. Math. Phys., 98, 225-287 (2011) · Zbl 1239.81057 · doi:10.1007/s11005-011-0531-8
[729] Galakhov, D. V.; Mironov, A. D.; Morozov, A. Y.; Smirnov, A. V.; Mironov, A. D.; Morozov, A. Y.; Smirnov, A. V., Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation, Theor. Math. Phys., 172, 939-962 (2012) · Zbl 1280.81092 · doi:10.1007/s11232-012-0088-4
[730] Terashima, Y.; Yamazaki, M., Semiclassical analysis of the 3D/3D relation, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.026011
[731] Witten, E.; Andersen, J. E.; Boden, H. U.; Hahn, A.; Himpel, B., Analytic Continuation of Chern-Simons Theory, 347-446 (2011) · Zbl 1337.81106
[732] Mikhaylov, V., Teichmüller TQFT vs Chern-Simons theory, J. High Energy Phys. (2018) · Zbl 1390.81612 · doi:10.1007/JHEP04(2018)085
[733] Andersen, J. E.; Kashaev, R., The teichmüller TQFT, 2527-2552 (2018)
[734] Haggard, H. M.; Han, M.; Kamiński, W.; Riello, A., Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks, Phys. Lett. B, 752, 258-262 (2016) · Zbl 1360.83052 · doi:10.1016/j.physletb.2015.11.058
[735] Dimofte, T.; Garoufalidis, S., Quantum modularity and complex Chern-Simons theory, Commun. Num. Theor. Phys., 12, 1-52 (2018) · Zbl 1447.57014 · doi:10.4310/cntp.2018.v12.n1.a1
[736] Closset, C.; Kim, H., Three-dimensional N = 2 supersymmetric gauge theories and partition functions on Seifert manifolds: a review, Int. J. Mod. Phys. A, 34, 1930011 (2019) · Zbl 1471.81088 · doi:10.1142/s0217751x19300114
[737] Pasquetti, S., Factorisation of \(####\) theories on the squashed three-sphere, J. High Energy Phys. (2012) · doi:10.1007/jhep04(2012)120
[738] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/bf01217730
[739] Gaiotto, D.; Witten, E., Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys., 16, 935-1086 (2012) · Zbl 1271.81108 · doi:10.4310/atmp.2012.v16.n3.a5
[740] Shakirov, S., β-deformation and superpolynomials of (n, m) torus knots (2011)
[741] Mironov, A.; Morozov, A.; Shakirov, S., Torus HOMFLYPT as the Hall-Littlewood polynomials, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1252.81101 · doi:10.1088/1751-8113/45/35/355202
[742] Tanaka, A., Comments on knotted 1/2 BPS Wilson loops, J. High Energy Phys. (2012) · Zbl 1397.81402 · doi:10.1007/jhep07(2012)097
[743] Mironov, A.; Morozov, A., Equations on knot polynomials and 3D/5D duality, AIP Conf. Proc., 1483, 189-211 (2012) · Zbl 1291.81260 · doi:10.1063/1.4756970
[744] Gorsky, A.; Milekhin, A., Condensates and instanton - torus knot duality. hidden physics at UV scale, Nucl. Phys. B, 900, 366-399 (2015) · Zbl 1331.81192 · doi:10.1016/j.nuclphysb.2015.09.015
[745] Gorsky, A.; Milekhin, A.; Sopenko, N., The condensate from torus knots, J. High Energy Phys. (2015) · Zbl 1388.81535 · doi:10.1007/jhep09(2015)102
[746] Gorsky, A., Instanton-torus knot duality in 5D SQED and SU(2) SQCD (2016)
[747] Nawata, S.; Oblomkov, A., Lectures on knot homology, Contemp. Math., 680, 137 (2016) · Zbl 1373.57002 · doi:10.1090/conm/680/13702
[748] Morozov, A., Integrability in non-perturbative QFT, AIP Conf. Proc., 1562, 167-176 (2013) · doi:10.1063/1.4828690
[749] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, A., Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux, Adv. High Energy Phys., 2013 (2013) · Zbl 1328.81123 · doi:10.1155/2013/931830
[750] Nawata, S.; Ramadevi, P.; Zodinmawia, Colored Kauffman homology and super-A-polynomials, J. High Energy Phys. (2014) · Zbl 1333.81351 · doi:10.1007/jhep01(2014)126
[751] Bulycheva, K.; Gorsky, A., BPS states in the Ω-background and torus knots, J. High Energy Phys. (2014) · doi:10.1007/jhep04(2014)164
[752] Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A., On genus expansion of superpolynomials, Nucl. Phys. B, 889, 757-777 (2014) · Zbl 1326.57030 · doi:10.1016/j.nuclphysb.2014.11.003
[753] Sleptsov, A., Hidden structures of knot invariants, PhD Thesis (2014) · Zbl 1380.57008
[754] Anokhina, A.; Morozov, A., Towards R-matrix construction of Khovanov-Rozansky polynomials: I. Primary T-deformation of HOMFLY, J. High Energy Phys. (2014) · Zbl 1333.81302 · doi:10.1007/JHEP07(2014)063
[755] Mironov, A.; Morozov, A.; Morozov, A., On colored HOMFLY polynomials for twist knots, Mod. Phys. Lett. A, 29, 1450183 (2014) · Zbl 1302.81134 · doi:10.1142/s0217732314501831
[756] Sleptsov, A., Hidden structures of knot invariants, Int. J. Mod. Phys. A, 29, 1430063 (2014) · Zbl 1380.57008 · doi:10.1142/s0217751x14300634
[757] Alekseev, O.; Novaes, F., Wilson loop invariants from W_N conformal blocks, Nucl. Phys. B, 901, 461-479 (2015) · Zbl 1332.81221 · doi:10.1016/j.nuclphysb.2015.11.002
[758] Morozov, A., Factorization of differential expansion for antiparallel double-braid knots, J. High Energy Phys. (2016) · Zbl 1388.57013 · doi:10.1007/jhep09(2016)135
[759] Morozov, A. A., The properties of conformal blocks, the AGT hypothesis, and knot polynomials, Phys. Part. Nucl., 47, 775-837 (2016) · doi:10.1134/s106377961605004x
[760] Morozov, A., Generalized hypergeometric series for Racah matrices in rectangular representations, Mod. Phys. Lett. A, 33, 1850020 (2018) · Zbl 1381.81058 · doi:10.1142/s0217732318500207
[761] Morozov, A., On exclusive Racah matrices \(####\) for rectangular representations, Phys. Lett. B, 793, 116-125 (2019) · Zbl 1420.57026 · doi:10.1016/j.physletb.2019.04.034
[762] Morozov, A., Pentad and triangular structures behind the Racah matrices, Eur. Phys. J. Plus, 135, 196 (2020) · doi:10.1140/epjp/s13360-020-00234-w
[763] Martelli, D.; Passias, A.; Sparks, J., The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B, 864, 840-868 (2012) · Zbl 1262.81112 · doi:10.1016/j.nuclphysb.2012.07.019
[764] Gang, D.; Kim, N.; Lee, S., Holography of wrapped M5-branes and Chern-Simons theory, Phys. Lett. B, 733, 316-319 (2014) · Zbl 1370.81141 · doi:10.1016/j.physletb.2014.04.051
[765] Bah, I.; Gabella, M.; Halmagyi, N., BPS M5-branes as defects for the 3D-3D correspondence, J. High Energy Phys. (2014) · doi:10.1007/jhep11(2014)112
[766] Gang, D.; Kim, N.; Lee, S., Holography of 3D-3D correspondence at large N, J. High Energy Phys. (2015) · Zbl 1388.83802 · doi:10.1007/jhep04(2015)091
[767] Terashima, Y.; Yamazaki, M., Emergent three-manifolds from 4D superconformal indices, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.091602
[768] Anderson, L.; Linander, H., The trouble with twisting (2, 0) theory, J. High Energy Phys. (2014) · Zbl 1333.81227 · doi:10.1007/jhep03(2014)062
[769] Gran, U.; Linander, H.; Nilsson, B. E W., Off-shell structure of twisted (2, 0) theory, J. High Energy Phys. (2014) · Zbl 1333.81245 · doi:10.1007/jhep11(2014)032
[770] Vafa, C.; Witten, E., A strong coupling test of S-duality, Nucl. Phys. B, 431, 3-77 (1994) · Zbl 0964.81522 · doi:10.1016/0550-3213(94)90097-3
[771] Gadde, A.; Gukov, S.; Putrov, P., (0, 2) trialities, J. High Energy Phys. (2014) · doi:10.1007/jhep03(2014)076
[772] Han, M., 4D quantum geometry from 3D supersymmetric gauge theory and holomorphic Block, J. High Energy Phys. (2016) · Zbl 1388.81151 · doi:10.1007/jhep01(2016)065
[773] Putrov, P.; Song, J.; Yan, W., (0, 4) dualities, J. High Energy Phys. (2016) · Zbl 1388.81736 · doi:10.1007/jhep03(2016)185
[774] Assel, B.; Schäfer-Nameki, S.; Wong, J-M, M5-branes on S^2 × M_4: Nahm’s equations and 4D topological sigma-models, J. High Energy Phys. (2016) · doi:10.1007/jhep09(2016)120
[775] Apruzzi, F.; Hassler, F.; Heckman, J. J.; Melnikov, I. V., From 6D SCFTs to dynamic GLSMs, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.066015
[776] Dedushenko, M.; Gukov, S.; Putrov, P., Vertex algebras and four-manifold invariants, vol 1, 249-318 (2017)
[777] Feigin, B.; Gukov, S., VOA[M4], J. Math. Phys., 61 (2020) · Zbl 1478.17025 · doi:10.1063/1.5100059
[778] Dimofte, T.; Paquette, N. M., (0, 2) dualities and the four-simplex, J. High Energy Phys. (2019) · doi:10.1007/jhep08(2019)132
[779] Gukov, S., Trisecting non-Lagrangian theories, J. High Energy Phys. (2017) · Zbl 1383.83174 · doi:10.1007/jhep11(2017)178
[780] Gukov, S.; Pei, D.; Putrov, P.; Vafa, C., Four-manifolds and topological modular forms, J. High Energy Phys. (2021) · doi:10.1007/jhep05(2021)084
[781] Maruyoshi, K.; Taki, M.; Terashima, S.; Yagi, F., New Seiberg dualities from N = 2 dualities, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/09/086
[782] Benini, F.; Tachikawa, Y.; Wecht, B., Sicilian gauge theories and N = 1 dualities, J. High Energy Phys. (2010) · Zbl 1269.81080 · doi:10.1007/JHEP01(2010)088
[783] Tachikawa, Y.; Yonekura, K., N = 1 curves for trifundamentals, J. High Energy Phys. (2011) · Zbl 1298.81201 · doi:10.1007/JHEP07(2011)025
[784] Gadde, A.; Maruyoshi, K.; Tachikawa, Y.; Yan, W., New N = 1 dualities, J. High Energy Phys. (2013) · Zbl 1342.81581 · doi:10.1007/JHEP06(2013)056
[785] Bonelli, G.; Giacomelli, S.; Maruyoshi, K.; Tanzini, A., geometries via M-theory, J. High Energy Phys. (2013) · doi:10.1007/jhep10(2013)227
[786] Xie, D.; Yonekura, K., Generalized Hitchin system, spectral curve and \(####\) dynamics, J. High Energy Phys. (2014) · doi:10.1007/JHEP01(2014)001
[787] Giacomelli, S., Four dimensional superconformal theories from M5 branes, J. High Energy Phys. (2015) · Zbl 1388.81819 · doi:10.1007/jhep01(2015)044
[788] Gadde, A.; Razamat, S. S.; Willett, B., ‘Lagrangian’ for a non-Lagrangian field theory with N = 2 supersymmetry \(####\) supersymmetry, Phys. Rev. Lett., 115 (2015) · doi:10.1103/physrevlett.115.171604
[789] Maruyoshi, K.; Song, J., Enhancement of supersymmetry via renormalization group flow and the superconformal index, Phys. Rev. Lett., 118 (2017) · doi:10.1103/physrevlett.118.151602
[790] Maruyoshi, K.; Song, J., deformations and RG flows of \(####\) SCFTs, J. High Energy Phys. (2017) · Zbl 1377.81118 · doi:10.1007/JHEP02(2017)075
[791] Fazzi, M.; Giacomelli, S., superconformal theories with D_N blocks, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.085010
[792] Agarwal, P.; Maruyoshi, K.; Song, J.; Agarwal, P.; Maruyoshi, K.; Song, J., Deformations and RG flows of \(####\) SCFTs: II. Non-principal deformations, J. High Energy Phys.. J. High Energy Phys. (2017) · doi:10.1007/jhep04(2017)113
[793] Agarwal, P.; Sciarappa, A.; Song, J., Lagrangians for generalized Argyres-Douglas theories, J. High Energy Phys. (2017) · Zbl 1383.81277 · doi:10.1007/jhep10(2017)211
[794] Benvenuti, S.; Giacomelli, S., Lagrangians for generalized Argyres-Douglas theories, J. High Energy Phys. (2017) · Zbl 1383.81277 · doi:10.1007/jhep10(2017)106
[795] Giacomelli, S., RG flows with supersymmetry enhancement and geometric engineering, J. High Energy Phys. (2018) · Zbl 1395.81266 · doi:10.1007/jhep06(2018)156
[796] Agarwal, P.; Maruyoshi, K.; Song, J., A ‘Lagrangian’ for the E_7 superconformal theory, J. High Energy Phys. (2018) · Zbl 1391.81182 · doi:10.1007/jhep05(2018)193
[797] Maruyoshi, K.; Nardoni, E.; Song, J., Landscape of simple superconformal field theories in 4D, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.121601
[798] Giacomelli, S., Infrared enhancement of supersymmetry in four dimensions, J. High Energy Phys. (2018) · Zbl 1402.81243 · doi:10.1007/jhep10(2018)041
[799] Carta, F.; Giacomelli, S.; Savelli, R., SUSY enhancement from T-branes, J. High Energy Phys. (2018) · Zbl 1405.81096 · doi:10.1007/jhep12(2018)127
[800] Razamat, S. S.; Zafrir, G., N = 1 conformal dualities, J. High Energy Phys. (2019) · Zbl 1423.81164 · doi:10.1007/JHEP09(2019)046
[801] Carta, F.; Giacomelli, S.; Hayashi, H.; Savelli, R., The geometry of SUSY enhancement, J. High Energy Phys. (2020) · Zbl 1435.81208 · doi:10.1007/jhep02(2020)106
[802] Buican, M.; Laczko, Z.; Nishinaka, T., Flowing from 16 to 32 supercharges, J. High Energy Phys. (2018) · Zbl 1402.81239 · doi:10.1007/jhep10(2018)175
[803] Bah, I.; Wecht, B., New N = 1 superconformal field theories in four dimensions, J. High Energy Phys. (2013) · doi:10.1007/jhep07(2013)107
[804] Bah, I.; Beem, C.; Bobev, N.; Wecht, B., AdS/CFT dual pairs from M5-branes on Riemann surfaces, Phys. Rev. D, 85 (2012) · doi:10.1103/physrevd.85.121901
[805] Bah, I.; Beem, C.; Bobev, N.; Wecht, B., Four-dimensional SCFTs from M5-branes, J. High Energy Phys. (2012) · Zbl 1397.81218 · doi:10.1007/jhep06(2012)005
[806] Beem, C.; Gadde, A., The N = 1 superconformal index for class S fixed points, J. High Energy Phys. (2014) · doi:10.1007/JHEP04(2014)036
[807] Xie, D., M5 brane and four dimensional N = 1 theories: I, J. High Energy Phys. (2014) · doi:10.1007/jhep04(2014)154
[808] Bah, I.; Bobev, N., Linear quivers and \(####\) SCFTs from M5-branes, J. High Energy Phys. (2014) · Zbl 1383.81275 · doi:10.1007/jhep08(2014)121
[809] McGrane, J.; Wecht, B., Theories of class \(####\) and new \(####\) SCFTs, J. High Energy Phys. (2015) · doi:10.1007/JHEP06(2015)047
[810] Xie, D., N = 1 curve (2014)
[811] Razamat, S. S.; Willett, B., Star-shaped quiver theories with flux, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.065004
[812] Ohmori, K.; Shimizu, H.; Tachikawa, Y.; Yonekura, K., 6D \(####\) theories on T^2 and class S theories: I, J. High Energy Phys. (2015) · doi:10.1103/PhysRevD.101.065004
[813] Franco, S.; Hayashi, H.; Uranga, A., Charting class \(####_k\) territory, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.045004
[814] Del Zotto, M.; Vafa, C.; Xie, D., Geometric engineering, mirror symmetry and \(####\), Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.045004
[815] Hanany, A.; Maruyoshi, K., Chiral theories of class \(####\), J. High Energy Phys. (2015) · Zbl 1388.81670 · doi:10.1007/JHEP12(2015)080
[816] Ohmori, K.; Shimizu, H.; Tachikawa, Y.; Yonekura, K., 6D \(####\) theories on S^1/T^2 and class S theories: II, J. High Energy Phys. (2015) · doi:10.1007/JHEP12(2015)131
[817] Coman, I.; Pomoni, E.; Taki, M.; Yagi, F., Spectral curves of \(####\) theories of class \(####\), J. High Energy Phys. (2017) · doi:10.1007/jhep06(2017)136
[818] Ito, Y.; Yoshida, Y., Superconformal index with surface defects for class \(####\), Nucl. Phys. B, 962 (2021) · Zbl 1476.81079 · doi:10.1016/j.nuclphysb.2020.115277
[819] Heckman, J. J.; Jefferson, P.; Rudelius, T.; Vafa, C., Punctures for theories of class \(####\), J. High Energy Phys. (2017) · doi:10.1007/jhep03(2017)171
[820] Bah, I.; Hanany, A.; Maruyoshi, K.; Razamat, S. S.; Tachikawa, Y.; Zafrir, G., 4D \(####\) from 6D \(####\) on a torus with fluxes, J. High Energy Phys. (2017) · Zbl 1380.81383 · doi:10.1007/JHEP06(2017)022
[821] Mitev, V.; Pomoni, E., 2D CFT blocks for the 4D class \(####\) theories, J. High Energy Phys. (2017) · Zbl 1381.81120 · doi:10.1007/JHEP08(2017)009
[822] Bourton, T.; Pomoni, E., Instanton counting in class \(####\), J. Phys. A: Math. Theor., 53 (2020) · doi:10.1088/1751-8121/ab6a6D
[823] Razamat, S. S.; Sabag, E., A freely generated ring for \(####\) models in class \(####\), J. High Energy Phys. (2018) · doi:10.1007/jhep07(2018)150
[824] Ohmori, K.; Tachikawa, Y.; Zafrir, G., Compactifications of 6D N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes, J. High Energy Phys. (2019) · Zbl 1415.81105 · doi:10.1007/JHEP04(2019)006
[825] Kim, H-C; Razamat, S. S.; Vafa, C.; Zafrir, G., E‐string theory on Riemann surfaces, Fortschr. Phys., 66, 1700074 (2018) · Zbl 1535.81231 · doi:10.1002/prop.201700074
[826] Kim, H-C; Razamat, S. S.; Vafa, C.; Zafrir, G., D-type conformal matter and SU/USp quivers, J. High Energy Phys. (2018) · Zbl 1395.81186 · doi:10.1007/jhep06(2018)058
[827] Kim, H-C; Razama, S. S.; Vaf, C.; Zafri, G., Compactifications of ADE conformal matter on a torus, J. High Energy Phys. (2018) · Zbl 1398.81213 · doi:10.1007/jhep09(2018)110
[828] Heckman, J. J.; Morrison, D. R.; Rudelius, T.; Vafa, C., Atomic classification of 6D SCFTs, Fortschr. Phys., 63, 468-530 (2015) · Zbl 1338.81326 · doi:10.1002/prop.201500024
[829] Bhardwaj, L., Classification of 6D \(####\) gauge theories, J. High Energy Phys. (2015) · Zbl 1388.81285 · doi:10.1007/JHEP11(2015)002
[830] Bhardwaj, L., Revisiting the classifications of 6D SCFTs and LSTs, J. High Energy Phys. (2020) · Zbl 1435.83170 · doi:10.1007/jhep03(2020)171
[831] Morrison, D. R.; Vafa, C., F-theory and \(####\) SCFTs in four dimensions, J. High Energy Phys. (2016) · Zbl 1390.81459 · doi:10.1007/JHEP08(2016)070
[832] Razamat, S. S.; Vafa, C.; Zafrir, G., 4D \(####\) from 6D (1, 0), J. High Energy Phys. (2017) · Zbl 1378.81122 · doi:10.1007/JHEP04(2017)064
[833] Razamat, S. S.; Zafrir, G., Compactification of 6D minimal SCFTs on Riemann surfaces, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.066006
[834] Razamat, S. S.; Sabag, E., Sequences of 6D SCFTs on generic Riemann surfaces, J. High Energy Phys. (2020) · Zbl 1434.81130 · doi:10.1007/jhep01(2020)086
[835] Razamat, S. S., Flavored surface defects in 4D \(####\) SCFTs, Lett. Math. Phys., 109, 1377-1395 (2019) · Zbl 1417.81158 · doi:10.1007/s11005-018-01145-9
[836] Del Zotto, M.; Heckman, J. J.; Morrison, D. R., 6D SCFTs and phases of 5D theories, J. High Energy Phys. (2017) · Zbl 1382.81176 · doi:10.1007/jhep09(2017)147
[837] Franco, S.; Galloni, D.; Seong, R-K, New directions in bipartite field theories, J. High Energy Phys. (2013) · Zbl 1342.81577 · doi:10.1007/jhep06(2013)032
[838] Franco, S.; Galloni, D.; Mariotti, A., Bipartite field theories, cluster algebras and the grassmannian, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1316.14075 · doi:10.1088/1751-8113/47/47/474004
[839] Garcia-Etxebarria, I.; Heidenreich, B.; Wrase, T., New N = 1 dualities from orientifold transitions: I. Field Theory, J. High Energy Phys. (2013) · Zbl 1342.81427 · doi:10.1007/JHEP10(2013)007
[840] Bianchi, M.; Inverso, G.; Morales, J. F.; Pacifici, D. R., Unoriented quivers with flavour, J. High Energy Phys. (2014) · doi:10.1007/jhep01(2014)128
[841] Garcia-Etxebarria, I.; Heidenreich, B.; Wrase, T., New N = 1 dualities from orientifold transitions: II. String theory, J. High Energy Phys. (2013) · doi:10.1007/JHEP10(2013)006
[842] Garcia-Etxebarria, I.; Heidenreich, B., Strongly coupled phases of \(#### S\)-duality, J. High Energy Phys. (2015) · Zbl 1388.81531 · doi:10.1007/JHEP09(2015)032
[843] Garcia-Etxebarria, I.; Heidenreich, B., S-duality in \(####\) orientifold SCFTs, Fortsch. Phys., 65, 1700013 (2017) · Zbl 1371.81271 · doi:10.1002/prop.201700013
[844] Bershtein, M.; Foda, O., AGT, Burge pairs and minimal models, J. High Energy Phys. (2014) · Zbl 1333.81362 · doi:10.1007/jhep06(2014)177
[845] Alkalaev, K. B.; Belavin, V. A., Conformal blocks of WN minimal models and AGT correspondence, J. High Energy Phys. (2014) · doi:10.1007/JHEP07(2014)024
[846] Foda, O.; Wu, J-F, From topological strings to minimal models, J. High Energy Phys. (2015) · Zbl 1388.81525 · doi:10.1007/jhep07(2015)136
[847] Belavin, V.; Foda, O.; Santachiara, R., AGT, N-Burge partitions and \(####\) minimal models, J. High Energy Phys. (2015) · Zbl 1388.81633 · doi:10.1007/JHEP10(2015)073
[848] Fucito, F.; Morales, J. F.; Poghossian, R., Wilson loops and chiral correlators on squashed spheres, J. High Energy Phys. (2015) · Zbl 1388.83243 · doi:10.1007/jhep11(2015)064
[849] Braverman, A.; Feigin, B.; Finkelberg, M.; Rybnikov, L., A finite analog of the AGT relation: I. Finite W-algebras and quasimaps’ spaces, Commun. Math. Phys., 308, 457-478 (2011) · Zbl 1247.81169 · doi:10.1007/s00220-011-1300-3
[850] Nakajima, H., Handsaw quiver varieties and finite W-algebras, Moscow Math. J., 12, 633 (2012) · Zbl 1290.17013 · doi:10.17323/1609-4514-2012-12-3-633-666
[851] Bullimore, M.; Dimofte, T.; Gaiotto, D.; Hilburn, J.; Kim, H-C, Vortices and Vermas, Adv. Theor. Math. Phys., 22, 803-917 (2018) · Zbl 07430942 · doi:10.4310/atmp.2018.v22.n4.a1
[852] Bawane, A.; Bonelli, G.; Ronzani, M.; Tanzini, A., supersymmetric gauge theories on S^2 × S^2 and Liouville gravity, J. High Energy Phys. (2015)
[853] Luo, Y.; Tan, M-C; Vasko, P.; Zhao, Q., Four-dimensional \(####\) supersymmetric theory with boundary as a two-dimensional complex Toda theory, J. High Energy Phys. (2017) · doi:10.1007/jhep05(2017)121
[854] Nagasaki, K.; Yamaguchi, S., Two-dimensional superconformal field theories from Riemann surfaces with a boundary, Phys. Rev. D, 91 (2015) · doi:10.1103/physrevd.91.065025
[855] Nagasaki, K., Construction of 4D SYM compactified on open Riemann surfaces by the superfield formalism, J. High Energy Phys. (2015) · Zbl 1388.81357 · doi:10.1007/jhep11(2015)156
[856] Benini, F.; Bobev, N.; Crichigno, P. M., Two-dimensional SCFTs from D3-branes, J. High Energy Phys. (2016) · Zbl 1390.83088 · doi:10.1007/jhep07(2016)020
[857] Nagasaki, K., Localization of four-dimensional super-Yang-Mills theories compactified on Riemann surface, Int. J. Mod. Phys. A, 31, 1650195 (2016) · Zbl 1356.81174 · doi:10.1142/s0217751x16501955
[858] Okazaki, T., Membrane quantum mechanics, Nucl. Phys. B, 890, 400-441 (2014) · Zbl 1326.81169 · doi:10.1016/j.nuclphysb.2014.11.024
[859] Okazaki, T., Superconformal quantum mechanics from M2-branes, PhD Thesis (2015)
[860] Gorsky, A.; Krichever, I.; Marshakov, A.; Mironov, A.; Morozov, A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B, 355, 466-474 (1995) · Zbl 0997.81567 · doi:10.1016/0370-2693(95)00723-x
[861] Martinec, E. J.; Warner, N. P., Integrable systems and supersymmetric gauge theory, Nucl. Phys. B, 459, 97-112 (1996) · Zbl 0996.37506 · doi:10.1016/0550-3213(95)00588-9
[862] Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B, 460, 299-334 (1996) · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[863] Itoyama, H.; Morozov, A., Integrability and Seiberg-Witten theory curves and periods, Nucl. Phys. B, 477, 855-877 (1996) · Zbl 0925.81362 · doi:10.1016/0550-3213(96)00358-6
[864] Nekrasov, N. A.; Shatashvili, S. L., Quantization of integrable systems and four dimensional gauge theories, 265-289 (2009) · Zbl 1214.83049
[865] Nekrasov, N., BPS/CFT correspondence: II. Instantons at crossroads, moduli and compactness theorem, Adv. Theor. Math. Phys., 21, 503-583 (2017) · Zbl 1508.81938 · doi:10.4310/atmp.2017.v21.n2.a4
[866] Nekrasov, N., BPS/CFT correspondence: III. Gauge Origami partition function and qq-characters, Commun. Math. Phys., 358, 863-894 (2018) · Zbl 1386.81125 · doi:10.1007/s00220-017-3057-9
[867] Nekrasov, N., BPS/CFT correspondence IV: sigma models and defects in gauge theory, Lett. Math. Phys., 109, 579-622 (2019) · Zbl 1411.81213 · doi:10.1007/s11005-018-1115-7
[868] Koroteev, P., On quiver W-algebras and defects from gauge origami, Phys. Lett. B, 800 (2020) · Zbl 1434.81044 · doi:10.1016/j.physletb.2019.135101
[869] Cassia, L.; Lodin, R.; Popolitov, A.; Zabzine, M., Exact SUSY Wilson loops on S^3 from q-Virasoro constraints, J. High Energy Phys. (2019) · Zbl 1431.81123 · doi:10.1007/jhep12(2019)121
[870] Kimura, T., Integrating over quiver variety and BPS/CFT correspondence, Lett. Math. Phys., 110, 1237-1255 (2020) · Zbl 1441.81128 · doi:10.1007/s11005-020-01261-5
[871] Nekrasov, N. A.; Shatashvili, S. L., Supersymmetric vacua and Bethe ansatz, Nucl. Phys. B, 192-193, 91-112 (2009) · doi:10.1016/j.nuclphysbps.2009.07.047
[872] Nekrasov, N.; Shatashvili, S., Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl., 177, 105-119 (2009) · Zbl 1173.81325 · doi:10.1143/ptps.177.105
[873] Orlando, D.; Reffert, S., Relating gauge theories via gauge/Bethe correspondence, J. High Energy Phys. (2010) · Zbl 1291.81267 · doi:10.1007/jhep10(2010)071
[874] Poghossian, R., Deforming SW curve, J. High Energy Phys. (2011) · Zbl 1250.81111 · doi:10.1007/jhep04(2011)033
[875] Fucito, F.; Morales, J. F.; Pacifici, D. R.; Poghossian, R., Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, J. High Energy Phys. (2011) · doi:10.1007/jhep05(2011)098
[876] Dorey, N.; Lee, S.; Hollowood, T. J., Quantization of integrable systems and a 2D/4D duality, J. High Energy Phys. (2011) · Zbl 1303.81114 · doi:10.1007/jhep10(2011)077
[877] Chen, H-Y; Dorey, N.; Hollowood, T. J.; Lee, S., A new 2D/4D duality via integrability, J. High Energy Phys. (2011) · Zbl 1301.81115 · doi:10.1007/jhep09(2011)040
[878] Ferrari, F.; Pia̧tek, M., On a singular Fredholm-type integral equation arising in N = 2 super-Yang-Mills theories, Phys. Lett. B, 718, 1142-1147 (2013) · Zbl 1332.81135 · doi:10.1016/j.physletb.2012.11.069
[879] Huang, M-x, On gauge theory and topological string in Nekrasov-shatashvili limit, J. High Energy Phys. (2012) · Zbl 1397.81151 · doi:10.1007/jhep06(2012)152
[880] Bulycheva, K.; Chen, H-Y; Gorsky, A.; Koroteev, P., BPS states in omega background and integrability, J. High Energy Phys. (2012) · Zbl 1397.81344 · doi:10.1007/jhep10(2012)116
[881] Ferrari, F.; Piatek, M., On a path integral representation of the Nekrasov instanton partition function and its Nekrasov-Shatashvili limit (2012)
[882] Orlando, D., A stringy perspective on the quantum integrable model/gauge correspondence (2013)
[883] Meneghelli, C.; Yang, G., Mayer-cluster expansion of instanton partition functions and thermodynamic Bethe ansatz, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)112
[884] Nekrasov, N.; Pestun, V.; Shatashvili, S., Quantum geometry and quiver gauge theories, Commun. Math. Phys., 357, 519-567 (2018) · Zbl 1393.81033 · doi:10.1007/s00220-017-3071-y
[885] He, W., Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations, Ann. Phys., NY, 353, 150-162 (2015) · Zbl 1343.81171 · doi:10.1016/j.aop.2014.11.006
[886] Kashani-Poor, A-K; Troost, J., Pure \(####\) super Yang-Mills and exact WKB, J. High Energy Phys. (2015) · doi:10.1007/jhep08(2015)160
[887] Bourgine, J-E; Fioravanti, D., Finite ϵ_2-corrections to the \(####\) SYM prepotential, Phys. Lett. B, 750, 139-146 (2015) · Zbl 1364.81219 · doi:10.1016/j.physletb.2015.09.002
[888] Bourgine, J-E; Fioravanti, D., Mayer expansion of the Nekrasov prepotential: the subleading ε_2-order, Nucl. Phys. B, 906, 408-440 (2016) · Zbl 1334.81065 · doi:10.1016/j.nuclphysb.2016.03.017
[889] Ito, K.; Kanno, S.; Okubo, T., Quantum periods and prepotential in \(####\) SQCD, J. High Energy Phys. (2017) · Zbl 1381.81140 · doi:10.1007/JHEP08(2017)065
[890] Ito, K.; Okubo, T., Quantum periods for \(####\) SU(2) SQCD around the superconformal point, Nucl. Phys. B, 934, 356-379 (2018) · Zbl 1395.81286 · doi:10.1016/j.nuclphysb.2018.07.007
[891] Alekseev, S.; Gorsky, A.; Litvinov, M., Toward the pole, J. High Energy Phys. (2020) · Zbl 1435.83139 · doi:10.1007/jhep03(2020)157
[892] Mironov, A.; Morozov, A., Nekrasov functions and exact Bohr-Zommerfeld integrals, J. High Energy Phys. (2010) · doi:10.1007/JHEP04(2010)040
[893] Mironov, A.; Morozov, A., Nekrasov functions from exact Bohr-Sommerfeld periods: the case of SU(N), J. Phys. A: Math. Theor., 43 (2010) · Zbl 1189.81237 · doi:10.1088/1751-8113/43/19/195401
[894] Mironov, A.; Morozov, A.; Shakirov, S., Matrix model conjecture for exact BS periods and Nekrasov functions, J. High Energy Phys. (2010) · Zbl 1270.81139 · doi:10.1007/jhep02(2010)030
[895] Alexandrov, S.; Roche, P., TBA for non-perturbative moduli spaces, J. High Energy Phys. (2010) · Zbl 1288.81072 · doi:10.1007/jhep06(2010)066
[896] He, W., Sine-Gordon quantum mechanics on the complex plane and N = 2 gauge theory, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.105017
[897] He, W.; Miao, Y-G, Magnetic expansion of Nekrasov theory: the SU(2) pure gauge theory, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.025020
[898] Piatek, M., Classical conformal blocks from TBA for the elliptic Calogero-Moser system, J. High Energy Phys. (2011) · Zbl 1298.81197 · doi:10.1007/JHEP06(2011)050
[899] Zenkevich, Y., Nekrasov prepotential with fundamental matter from the quantum spin chain, Phys. Lett. B, 701, 630-639 (2011) · doi:10.1016/j.physletb.2011.06.030
[900] Muneyuki, K.; Tai, T-S; Yonezawa, N.; Yoshioka, R., Baxter’s T-Q equation, SU(N)/SU(2)^N − 3 correspondence and Ω-deformed Seiberg-Witten prepotential, J. High Energy Phys. (2011) · doi:10.1007/jhep09(2011)125
[901] Wu, J-F; Xu, Y-Y; Yu, M., Recursions in Calogero-Sutherland model based on Virasoro singular vectors, Commun. Theor. Phys., 57, 743-758 (2012) · Zbl 1247.70038 · doi:10.1088/0253-6102/57/5/03
[902] He, W., Combinatorial approach to Mathieu and Lamé equations, J. Math. Phys., 56 (2015) · Zbl 1323.81037 · doi:10.1063/1.4926954
[903] Alexandrov, S., Twistor approach to string compactifications: a review, Phys. Rep., 522, 1-57 (2013) · doi:10.1016/j.physrep.2012.09.005
[904] Koroteev, P. A., On extended supersymmetry in two and four dimensions, PhD Thesis (2012)
[905] Mironov, A.; Morozov, A.; Zenkevich, Y.; Zotov, A., Spectral duality in integrable systems from AGT conjecture, JETP Lett., 97, 45-51 (2013) · doi:10.1134/s0021364013010062
[906] Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A., Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys., 103, 299-329 (2013) · Zbl 1262.14040 · doi:10.1007/s11005-012-0595-0
[907] Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A., Spectral dualities in XXZ spin chains and five dimensional gauge theories, J. High Energy Phys. (2013) · Zbl 1342.81310 · doi:10.1007/jhep12(2013)034
[908] Chekhov, L.; Eynard, B.; Ribault, S., Seiberg-Witten equations and non-commutative spectral curves in Liouville theory, J. Math. Phys., 54 (2013) · Zbl 1280.81117 · doi:10.1063/1.4792241
[909] Fucito, F.; Morales, J. F.; Pacifici, D. R., Deformed Seiberg-Witten curves for ADE quivers, J. High Energy Phys. (2013) · Zbl 1342.81578 · doi:10.1007/jhep01(2013)091
[910] Marshakov, A., Tau-functions for quiver gauge theories, J. High Energy Phys. (2013) · Zbl 1342.81308 · doi:10.1007/jhep07(2013)068
[911] Chen, H-Y; Sinkovics, A., On integrable structure and geometric transition in supersymmetric gauge theories, J. High Energy Phys. (2013) · Zbl 1342.81567 · doi:10.1007/jhep05(2013)158
[912] Gaiotto, D.; Koroteev, P., On three dimensional quiver gauge theories and integrability, J. High Energy Phys. (2013) · Zbl 1342.81284 · doi:10.1007/jhep05(2013)126
[913] Chen, H-Y; Hsin, P-S; Koroteev, P., On the integrability of four dimensional N = 2 gauge theories in the omega background, J. High Energy Phys. (2013) · Zbl 1342.83342 · doi:10.1007/JHEP08(2013)076
[914] He, W., N = 2 supersymmetric QCD and elliptic potentials, J. High Energy Phys. (2014) · Zbl 1333.81402 · doi:10.1007/jhep11(2014)030
[915] Popolitov, A. V., Relation between Nekrasov functions and Bohr-Sommerfeld periods in the pure SU(N) case, Theor. Math. Phys., 178, 239-252 (2014) · Zbl 1298.81198 · doi:10.1007/s11232-014-0139-0
[916] Dumitrescu, O.; Mulase, M., Quantum curves for Hitchin fibrations and the Eynard-Orantin theory, Lett. Math. Phys., 104, 635-671 (2014) · Zbl 1296.14026 · doi:10.1007/s11005-014-0679-0
[917] Gorsky, A.; Zabrodin, A.; Zotov, A., Spectrum of quantum transfer matrices via classical many-body systems, J. High Energy Phys. (2014) · Zbl 1333.81244 · doi:10.1007/jhep01(2014)070
[918] Gavrylenko, P.; Marshakov, A., Residue formulas for prepotentials, instanton expansions and conformal blocks, J. High Energy Phys. (2014) · doi:10.1007/jhep05(2014)097
[919] Bourgine, J-E, Confinement and Mayer cluster expansions, Int. J. Mod. Phys. A, 29, 1450077 (2014) · Zbl 1295.82009 · doi:10.1142/s0217751x14500778
[920] Aminov, G.; Braden, H. W.; Mironov, A.; Morozov, A.; Zotov, A., Seiberg-Witten curves and double-elliptic integrable systems, J. High Energy Phys. (2015) · Zbl 1388.81194 · doi:10.1007/jhep01(2015)033
[921] Alfimov, M. N.; Litvinov, A. V., On spectrum of ILW hierarchy in conformal field theory: II. Coset CFT’s, J. High Energy Phys. (2015) · Zbl 1518.81087 · doi:10.1007/jhep02(2015)150
[922] Sciarappa, A., Developments in quantum cohomology and quantum integrable hydrodynamics via supersymmetric gauge theories (2015)
[923] Bonelli, G.; Sciarappa, A.; Tanzini, A.; Vasko, P., Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories, J. Geom. Phys., 109, 3-43 (2016) · Zbl 1350.81016 · doi:10.1016/j.geomphys.2015.10.001
[924] Zenkevich, Y., Quantum spectral curve for (q, t)-matrix model, Lett. Math. Phys., 108, 413-424 (2018) · Zbl 1382.39005 · doi:10.1007/s11005-017-1015-2
[925] Poghossian, R., Deformed SW curve and the null vector decoupling equation in Toda field theory, J. High Energy Phys. (2016) · Zbl 1388.81066 · doi:10.1007/jhep04(2016)070
[926] Koroteev, P.; Sciarappa, A., On elliptic algebras and large-n supersymmetric gauge theories, J. Math. Phys., 57 (2016) · Zbl 1355.81112 · doi:10.1063/1.4966641
[927] Mironov, A.; Morozov, A.; Zenkevich, Y., Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings, J. High Energy Phys. (2016) · Zbl 1388.81588 · doi:10.1007/jhep05(2016)121
[928] Piatek, M.; Pietrykowski, A. R., Classical irregular blocks, Hill’s equation and PT-symmetric periodic complex potentials, J. High Energy Phys. (2016) · Zbl 1390.81160 · doi:10.1007/jhep07(2016)131
[929] Bourgine, J-E; Fukuda, M.; Matsuo, Y.; Zhang, H.; Zhu, R-D, Coherent states in quantum \(####\) algebra and qq-character for 5D super Yang-Mills, Prog. Theor. Exp. Phys., 2016 (2016) · Zbl 1361.81064 · doi:10.1093/ptep/ptw165
[930] Mironov, A.; Morozov, A., Check-operators and quantum spectral curves, Symmetry, Integrability Geometry Methods Appl., 13, 047 (2017) · Zbl 1369.14042 · doi:10.3842/sigma.2017.047
[931] Piątek, M.; Pietrykowski, A. R., Solving Heun’s equation using conformal blocks, Nucl. Phys. B, 938, 543-570 (2019) · Zbl 1405.34074 · doi:10.1016/j.nuclphysb.2018.11.021
[932] Bourgine, J-E; Fioravanti, D., Seiberg-Witten period relations in omega background, J. High Energy Phys. (2018) · Zbl 1396.81193 · doi:10.1007/jhep08(2018)124
[933] Bourgine, J-E; Fioravanti, D., Quantum integrability of \(#### 4\) D gauge theories, J. High Energy Phys. (2018) · doi:10.1007/jhep08(2018)125
[934] Bourgine, J-E; Dobrev, V., Webs of Quantum Algebra Representations in 5D \(####\) Super Yang-Mills, 209-218 (2017)
[935] Gorsky, A.; Milekhin, A.; Sopenko, N., Bands and gaps in Nekrasov partition function, J. High Energy Phys. (2018) · Zbl 1384.83057 · doi:10.1007/jhep01(2018)133
[936] Poghosyan, G., VEV of Q-operator in U(1) linear quiver 5D gauge theories (2018)
[937] Sechin, I.; Zotov, A., R-matrix-valued Lax pairs and long-range spin chains, Phys. Lett. B, 781, 1-7 (2018) · Zbl 1398.81111 · doi:10.1016/j.physletb.2018.03.062
[938] Fachechi, A.; Macorini, G.; Beccaria, M., Chiral trace relations in Ω-deformed \(####\) theories, J. Phys.: Conf. Ser., 965 (2018) · doi:10.1088/1742-6596/965/1/012013
[939] Poghosyan, G., VEV of Q-operator in U(1) linear quiver 4D gauge theories, Armen. J. Phys., 11, 34-38 (2018) · doi:10.52853/18291171
[940] Chen, H-Y; Kimura, T., Quantum integrability from non-simply laced quiver gauge theory, J. High Energy Phys. (2018) · Zbl 1395.81263 · doi:10.1007/jhep06(2018)165
[941] Gorsky, A., The Toda system and solution to the N = 2 SUSY Yang-Mills theory, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1405.37062 · doi:10.1088/1751-8121/aac399
[942] Melnikov, D.; Novaes, F.; Pérez, A.; Troncoso, R., Lifshitz scaling, microstate counting from number theory and black hole entropy, J. High Energy Phys. (2019) · Zbl 1416.83058 · doi:10.1007/jhep06(2019)054
[943] Costello, K.; Yagi, J., Unification of integrability in supersymmetric gauge theories, Adv. Theor. Math. Phys., 24, 1931-2041 (2020) · Zbl 1527.81103 · doi:10.4310/atmp.2020.v24.n8.a1
[944] Procházka, T., Instanton R-matrix and \(####\)-symmetry, J. High Energy Phys. (2019) · Zbl 1431.81126 · doi:10.1007/JHEP12(2019)099
[945] Fioravanti, D.; Gregori, D., Integrability and cycles of deformed N = 2 gauge theory, Phys. Lett. B, 804 (2020) · Zbl 1435.81129 · doi:10.1016/j.physletb.2020.135376
[946] Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A., Circular quiver gauge theories, isomonodromic deformations and WN fermions on the torus (2019)
[947] Fioravanti, D.; Poghosyan, H.; Poghossian, R. T., Q and periods in SU \((3) ####\) SYM, J. High Energy Phys. (2020) · doi:10.1007/JHEP03(2020)049
[948] Gorsky, A.; Koroteev, P.; Koroteeva, O.; Vainshtein, A., On dimensional transmutation in 1 + 1D quantum hydrodynamics, J. Math. Phys., 61 (2020) · Zbl 1454.81144 · doi:10.1063/1.5131471
[949] Pomoni, E., 4D \(####\) SCFTs and spin chains, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81438 · doi:10.1088/1751-8121/ab7f66
[950] Kashani-Poor, A-K, Computing Z_top, PhD Thesis (2014)
[951] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N., Self-dual strings and N = 2 supersymmetric field theory, Nucl. Phys. B, 477, 746-764 (1996) · Zbl 0925.81196 · doi:10.1016/0550-3213(96)00353-7
[952] Katz, S.; Klemm, A.; Vafa, C., Geometric engineering of quantum field theories, Nucl. Phys. B, 497, 173-195 (1997) · Zbl 0935.81058 · doi:10.1016/s0550-3213(97)00282-4
[953] Krefl, D.; Walcher, J.; Teschner, J., B-model approach to instanton counting, New Dualities of Supersymmetric Gauge Theories, 449-467 (2016) · Zbl 1334.81097
[954] Dijkgraaf, R.; Vafa, C., Toda theories, matrix models, topological strings, and N = 2 gauge systems (2009)
[955] Dijkgraaf, R.; Vafa, C., Matrix models, topological strings, and supersymmetric gauge theories, Nucl. Phys. B, 644, 3-20 (2002) · Zbl 0999.81068 · doi:10.1016/s0550-3213(02)00766-6
[956] Dijkgraaf, R.; Vafa, C., A perturbative window into nonperturbative physics (2002)
[957] Cheng, M. C N.; Dijkgraaf, R.; Vafa, C., Non-perturbative topological strings and conformal blocks, J. High Energy Phys. (2011) · Zbl 1301.81195 · doi:10.1007/jhep09(2011)022
[958] Sulkowski, P., Refined matrix models from BPS counting, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.085021
[959] Sulkowski, P., BPS states, crystals and matrices, Adv. High Energy Phys., 2011 (2011) · Zbl 1234.81125 · doi:10.1007/jhep03(2011)089
[960] Eynard, B.; Kozcaz, C., Mirror of the refined topological vertex from a matrix model (2011)
[961] Krefl, D.; Walcher, J., ABCD of beta ensembles and topological strings, J. High Energy Phys. (2012) · Zbl 1397.81265 · doi:10.1007/jhep11(2012)111
[962] Iqbal, A.; Kashani-Poor, A-K, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys., 7, 457-497 (2003) · Zbl 1044.32022 · doi:10.4310/atmp.2003.v7.n3.a4
[963] Iqbal, A.; Kashani-Poor, A-K, SU(N) geometries and topological string amplitudes, Adv. Theor. Math. Phys., 10, 1-32 (2006) · Zbl 1101.81088 · doi:10.4310/atmp.2006.v10.n1.a1
[964] Eguchi, T.; Kanno, H., Topological strings and Nekrasov’s formulas, J. High Energy Phys. (2003) · doi:10.1088/1126-6708/2003/12/006
[965] Hollowood, T.; Iqbal, A.; Vafa, C., Matrix models, geometric engineering and elliptic genera, J. High Energy Phys. (2008) · doi:10.1088/1126-6708/2008/03/069
[966] Aganagic, M.; Klemm, A.; Marino, M.; Vafa, C., The topological vertex, Commun. Math. Phys., 254, 425-478 (2005) · Zbl 1114.81076 · doi:10.1007/s00220-004-1162-z
[967] Iqbal, A.; Kozçaz, C.; Vafa, C., The refined topological vertex, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/10/069
[968] Awata, H.; Kanno, H., Instanton counting, Macdonald function and the moduli space of D-branes, J. High Energy Phys. (2005) · doi:10.1088/1126-6708/2005/05/039
[969] Awata, H.; Kanno, H., Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A, 24, 2253-2306 (2009) · Zbl 1170.81423 · doi:10.1142/s0217751x09043006
[970] Awata, H.; Feigin, B.; Shiraishi, J., Quantum algebraic approach to refined topological vertex, J. High Energy Phys. (2012) · Zbl 1309.81112 · doi:10.1007/jhep03(2012)041
[971] Brini, A.; Mariño, M.; Stevan, S., The uses of the refined matrix model recursion, J. Math. Phys., 52 (2011) · Zbl 1317.81216 · doi:10.1063/1.3587063
[972] Wu, J-F, Note on refined topological vertex, Jack polynomials and instanton counting (2010)
[973] Vafa, C., Supersymmetric partition functions and a string theory in four dimensions (2012)
[974] Hayashi, H.; Kim, H-C; Nishinaka, T., Topological strings and 5D T_N partition functions, J. High Energy Phys. (2014) · doi:10.1007/jhep06(2014)014
[975] Antoniadis, I.; Florakis, I.; Hohenegger, S.; Narain, K. S.; Zein Assi, A., Worldsheet realization of the refined topological string, Nucl. Phys. B, 875, 101-133 (2013) · Zbl 1282.81139 · doi:10.1016/j.nuclphysb.2013.07.004
[976] Antoniadis, I.; Florakis, I.; Hohenegger, S.; Narain, K. S.; Zein Assi, A., Non-perturbative Nekrasov partition function from string theory, Nucl. Phys. B, 880, 87-108 (2014) · Zbl 1284.81223 · doi:10.1016/j.nuclphysb.2014.01.006
[977] Fukuda, M.; Ohkubo, Y.; Shiraishi, J. i., Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction, Commun. Math. Phys., 380, 1-70 (2020) · Zbl 1458.81035 · doi:10.1007/s00220-020-03872-4
[978] Sasa, S.; Watanabe, A.; Matsuo, Y., A note on the S-dual basis in the free fermion system, Prog. Theor. Exp. Phys., 2020 (2020) · Zbl 1477.81139 · doi:10.1093/ptep/ptz158
[979] Hayashi, H.; Kim, S-S; Lee, K.; Yagi, F., Five-brane webs for 5D \(#### = 1\) G_2 gauge theories, J. High Energy Phys. (2018) · doi:10.1007/jhep03(2018)125
[980] Kimura, T.; Zhu, R-D, Web construction of ABCDEFG and affine quiver gauge theories, J. High Energy Phys. (2019) · Zbl 1423.81147 · doi:10.1007/jhep09(2019)025
[981] Krefl, D.; Walcher, J., Extended holomorphic anomaly in gauge theory, Lett. Math. Phys., 95, 67-88 (2011) · Zbl 1205.81118 · doi:10.1007/s11005-010-0432-2
[982] Huang, M-x; Klemm, A., Direct integration for general Ω backgrounds, Adv. Theor. Math. Phys., 16, 805-849 (2012) · Zbl 1276.81098 · doi:10.4310/atmp.2012.v16.n3.a2
[983] Krefl, D.; Walcher, J., Shift versus extension in refined partition functions (2010)
[984] Huang, M-x; Kashani-Poor, A-K; Klemm, A., The Ω deformed B-model for rigid \(####\) theories, Ann. Henri Poincaré, 14, 425-497 (2013) · Zbl 1272.81119 · doi:10.1007/s00023-012-0192-x
[985] Krefl, D.; Shih, S-Y D., Holomorphic anomaly in gauge theory on ALE space, Lett. Math. Phys., 103, 817-841 (2013) · Zbl 1268.81138 · doi:10.1007/s11005-013-0617-6
[986] Fischbach, F.; Klemm, A.; Nega, C., WKB method and quantum periods beyond genus one, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1505.81065 · doi:10.1088/1751-8121/aae8b0
[987] Huang, M-x; Sun, K.; Wang, X., Blowup equations for refined topological strings, J. High Energy Phys. (2018) · Zbl 1402.83096 · doi:10.1007/jhep10(2018)196
[988] Kashani-Poor, A-K, Quantization condition from exact WKB for difference equations, J. High Energy Phys. (2016) · Zbl 1388.81557 · doi:10.1007/jhep06(2016)180
[989] Coman, I.; Pomoni, E.; Teschner, J., From quantum curves to topological string partition functions (2018)
[990] Santillan, O. P., Geometric transitions, double scaling limits and gauge theories (2011)
[991] Kimura, T.; Mori, H.; Sugimoto, Y., Refined geometric transition and qq-characters, J. High Energy Phys. (2018) · Zbl 1384.83060 · doi:10.1007/jhep01(2018)025
[992] Jeong, S.; Zhang, X., A note on chiral trace relations from qq-characters, J. High Energy Phys. (2020) · doi:10.1007/jhep04(2020)026
[993] Nakayama, Y., Refined cigar and Ω-deformed conifold, J. High Energy Phys. (2010) · Zbl 1290.81130 · doi:10.1007/JHEP07(2010)054
[994] Dijkgraaf, R.; Fuji, H.; Manabe, M., The volume conjecture, perturbative Knot invariants, and recursion relations for topological strings, Nucl. Phys. B, 849, 166-211 (2011) · Zbl 1215.81082 · doi:10.1016/j.nuclphysb.2011.03.014
[995] Manabe, M., Deformed planar topological open string amplitudes on Seiberg-Witten curve, J. High Energy Phys. (2012) · Zbl 1348.81390 · doi:10.1007/jhep04(2012)082
[996] Kashani-Poor, A-K; Troost, J., The toroidal block and the genus expansion, J. High Energy Phys. (2013) · Zbl 1342.81441 · doi:10.1007/jhep03(2013)133
[997] Kashani-Poor, A-K; Troost, J., Transformations of spherical blocks, J. High Energy Phys. (2013) · Zbl 1342.83386 · doi:10.1007/jhep10(2013)009
[998] Grassi, A.; Hatsuda, Y.; Mariño, M., Topological strings from quantum mechanics, Ann. Henri Poincaré, 17, 3177-3235 (2016) · Zbl 1365.81094 · doi:10.1007/s00023-016-0479-4
[999] Cecotti, S.; Neitzke, A.; Vafa, C., Twistorial topological strings and a tt* geometry for \(####\) theories in 4D, Adv. Theor. Math. Phys., 20, 193-312 (2016) · Zbl 1355.81120 · doi:10.4310/atmp.2016.v20.n2.a1
[1000] Morozov, A.; Zenkevich, Y., Decomposing Nekrasov decomposition, J. High Energy Phys. (2016) · Zbl 1388.81686 · doi:10.1007/jhep02(2016)098
[1001] Florakis, I.; Zein Assi, A., from topological amplitudes in string theory, Nucl. Phys. B, 909, 480-506 (2016) · Zbl 1342.81424 · doi:10.1016/j.nuclphysb.2016.05.017
[1002] Bonelli, G.; Grassi, A.; Tanzini, A., Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys., 107, 1-30 (2017) · Zbl 1390.70067 · doi:10.1007/s11005-016-0893-z
[1003] Hayashi, H.; Zoccarato, G., Partition functions of web diagrams with an O_7^−-plane, J. High Energy Phys. (2017) · Zbl 1377.83121 · doi:10.1007/jhep03(2017)112
[1004] Hayashi, H.; Ohmori, K., 5D/6D DE instantons from trivalent gluing of web diagrams, J. High Energy Phys. (2017) · Zbl 1380.81328 · doi:10.1007/jhep06(2017)078
[1005] Cheng, S.; Kim, S-S, Refined topological vertex for a 5D Sp(N) gauge theories with antisymmetric matter, Phys. Rev. D, 104 (2021) · doi:10.1103/physrevd.104.086004
[1006] Chaimanowong, W.; Foda, O., Coloured refined topological vertices and parafermion conformal field theories, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1511.81112 · doi:10.1088/1751-8121/ab5e8e
[1007] Ohkubo, Y., Generalized Jack and Macdonald polynomials arising from AGT conjecture, J. Phys.: Conf. Ser., 804 (2017) · doi:10.1088/1742-6596/804/1/012036
[1008] Ridout, D.; Wood, S., From Jack polynomials to minimal model spectra, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1320.17018 · doi:10.1088/1751-8113/48/4/045201
[1009] Blondeau-Fournier, O.; Mathieu, P.; Ridout, D.; Wood, S., Superconformal minimal models and admissible Jack polynomials, Adv. Math., 314, 71-123 (2017) · Zbl 1430.17083 · doi:10.1016/j.aim.2017.04.026
[1010] Kononov, Y.; Morozov, A., On factorization of generalized Macdonald polynomials, Eur. Phys. J. C, 76, 424 (2016) · doi:10.1140/epjc/s10052-016-4276-5
[1011] Zenkevich, Y., Refined toric branes, surface operators and factorization of generalized Macdonald polynomials, J. High Energy Phys. (2017) · Zbl 1382.83113 · doi:10.1007/jhep09(2017)070
[1012] Ohkubo, Y., Kac determinant and singular vector of the level N representation of Ding-Iohara-Miki algebra, Lett. Math. Phys., 109, 33-60 (2019) · Zbl 1410.81026 · doi:10.1007/s11005-018-1094-8
[1013] Zenkevich, Y., 3D field theory, plane partitions and triple Macdonald polynomials, J. High Energy Phys. (2019) · Zbl 1416.81165 · doi:10.1007/jhep06(2019)012
[1014] Morozov, A. Y., Cut-and-join operators and Macdonald polynomials from the three-Schur functions, Theor. Math. Phys., 200, 938-965 (2019) · Zbl 1427.81075 · doi:10.1134/s004057791907002x
[1015] Morozov, A., Cauchy formula and the character ring, Eur. Phys. J. C, 79, 76 (2019) · doi:10.1140/epjc/s10052-019-6598-6
[1016] Alarie-Vézina, L.; Blondeau-Fournier, O.; Desrosiers, P.; Lapointe, L.; Mathieu, P., Symmetric functions in superspace: a compendium of results and open problems (including a SageMath worksheet) (2019)
[1017] Ohkubo, Y., Singular vectors of the Ding-Iohara-Miki algebra, Teor. Mat. Fiz., 199, 3-32 (2019) · Zbl 1432.81044 · doi:10.1134/s0040577919040019
[1018] Mironov, A.; Morozov, A., On generalized Macdonald polynomials, J. High Energy Phys. (2020) · Zbl 1434.81049 · doi:10.1007/jhep01(2020)110
[1019] Mironov, A.; Morozov, A., On Hamiltonians for Kerov functions, Eur. Phys. J. C, 80, 277 (2020) · doi:10.1140/epjc/s10052-020-7811-3
[1020] Albion, S. P.; Rains, E. M.; Warnaar, S. O., AFLT-type Selberg integrals, Commun. Math. Phys., 388, 735-791 (2021) · Zbl 1483.33007 · doi:10.1007/s00220-021-04157-0
[1021] Tsymbaliuk, A., The affine Yangian of \(####\) revisited, Adv. Math., 304, 583-645 (2017) · Zbl 1350.81017 · doi:10.1016/j.aim.2016.08.041
[1022] Burban, I.; Schiffmann, O., On the Hall algebra of an elliptic curve: I, Duke Math. J., 161, 1171-1231 (2012) · Zbl 1286.16029 · doi:10.1215/00127094-1593263
[1023] Schiffmann, O.; Vasserot, E., The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math., 147, 188-234 (2011) · Zbl 1234.20005 · doi:10.1112/s0010437x10004872
[1024] Cherednik, I., Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators, Int. Math. Res. Not., 1992, 171-180 (1992) · Zbl 0770.17004 · doi:10.1155/S1073792892000199
[1025] Cherednik, I., Introduction to double Hecke algebras (2004)
[1026] Feigin, B. L.; Tsymbaliuk, A., Equivariant K-theory of Hilbert schemes via shuffle algebra, Kyoto J. Math., 51, 831-854 (2011) · Zbl 1242.14006 · doi:10.1215/21562261-1424875
[1027] Schiffmann, O.; Vasserot, E., The elliptic Hall algebra and the K-theory of the Hilbert scheme of \(####\), Duke Math. J., 162, 279-366 (2013) · Zbl 1290.19001 · doi:10.1215/00127094-1961849
[1028] Ding, J.; Iohara, K., Generalization and deformation of Drinfeld quantum affine algebras (1996)
[1029] Miki, K., A (q, γ) analog of the W_1+∞ algebra, J. Math. Phys., 48 (2007) · Zbl 1153.81405 · doi:10.1063/1.2823979
[1030] Feigin, B.; Feigin, E.; Jimbo, M.; Miwa, T.; Mukhin, E., Quantum continuous \(####\): semiinfinite construction of representations, Kyoto J. Math., 51, 337-364 (2011) · Zbl 1278.17012 · doi:10.1215/21562261-1214375
[1031] Feigin, B.; Feigin, E.; Jimbo, M.; Miwa, T.; Mukhin, E., Quantum continuous gl_∞: tensor products of Fock modules and W_n characters (2010)
[1032] Schiffmann, O., Drinfeld realization of the elliptic Hall algebra, J. Algebr. Comb., 35, 237-262 (2012) · Zbl 1271.17010 · doi:10.1007/s10801-011-0302-8
[1033] Arbesfeld, N.; Schiffmann, O., A presentation of the deformed W_1+∞ algebra, Symmetries, Integrable Systems and Representations, 1-13 (2013), Berlin: Springer, Berlin
[1034] Kanno, S.; Matsuo, Y.; Shiba, S., W_1+∞ algebra as a symmetry behind AGT relation, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.026007
[1035] Procházka, T., -symmetry, topological vertex and affine Yangian, J. High Energy Phys. (2016) · Zbl 1390.81252 · doi:10.1007/JHEP10(2016)077
[1036] Awata, H.; Kanno, H.; Mironov, A.; Morozov, A.; Morozov, A.; Ohkubo, Y.; Zenkevich, Y., Toric Calabi-Yau threefolds as quantum integrable systems. \(####\)-matrix and \(####\) relations, J. High Energy Phys. (2016) · Zbl 1390.81221 · doi:10.1007/JHEP10(2016)047
[1037] Awata, H.; Kanno, H.; Mironov, A.; Morozov, A.; Morozov, A.; Ohkubo, Y.; Zenkevich, Y., Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.026021
[1038] Bourgine, J-E; Fukuda, M.; Harada, K.; Matsuo, Y.; Zhu, R-D, (p, q)-webs of DIM representations, 5D \(####\) instanton partition functions and qq-characters, J. High Energy Phys. (2017) · Zbl 1383.83156 · doi:10.1007/JHEP11(2017)034
[1039] Fukuda, M.; Harada, K.; Matsuo, Y.; Zhu, R-D, The Maulik-Okounkov R-matrix from the Ding-Iohara-Miki algebra, Prog. Theor. Exp. Phys., 2017 (2017) · Zbl 1524.81082 · doi:10.1093/ptep/ptx123
[1040] Bourgine, J-E; Fukuda, M.; Matsuo, Y.; Zhu, R-D, Reflection states in Ding-Iohara-Miki algebra and Brane-web for D-type quiver, J. High Energy Phys. (2017) · Zbl 1383.81265 · doi:10.1007/jhep12(2017)015
[1041] Bourgine, J-E; Zhang, K., A note on the algebraic engineering of 4D \(####\) super Yang-Mills theories, Phys. Lett. B, 789, 610-619 (2019) · Zbl 1406.81058 · doi:10.1016/j.physletb.2018.11.066
[1042] Bourgine, J-E, Fiber-base duality from the algebraic perspective, J. High Energy Phys. (2019) · Zbl 1414.81230 · doi:10.1007/jhep03(2019)003
[1043] Procházka, T., On even spin \(####\), J. High Energy Phys. (2020) · Zbl 1437.81102 · doi:10.1007/JHEP06(2020)057
[1044] Gaberdiel, M. R.; Gopakumar, R.; Li, W.; Peng, C., Higher spins and Yangian symmetries, J. High Energy Phys. (2017) · Zbl 1378.81116 · doi:10.1007/jhep04(2017)152
[1045] Ginzburg, V.; Kapranov, M.; Vasserot, E., Langlands reciprocity for algebraic surfaces (1995) · Zbl 0914.11040
[1046] Varagnolo, M.; Vasserot, E., Schur duality in the toroidal setting, Commun. Math. Phys., 182, 469-483 (1996) · Zbl 0879.17007 · doi:10.1007/bf02517898
[1047] Saito, Y., Quantum toroidal algebras and their vertex representations, Publ. Res. Inst. Math. Sci., 34, 155-177 (1998) · Zbl 0982.17008 · doi:10.2977/prims/1195144759
[1048] Feigin, B.; Tsymbaliuk, A., Bethe subalgebras of \(####\) via shuffle algebras, Sel. Math. New Ser., 22, 979-1011 (2016) · Zbl 1394.17051 · doi:10.1007/s00029-015-0212-z
[1049] Bershtein, M.; Tsymbaliuk, A., Homomorphisms between different quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra, 223, 867-899 (2019) · Zbl 1460.17019 · doi:10.1016/j.jpaa.2018.05.003
[1050] Tsymbaliuk, A., Several realizations of Fock modules for quantum toroidal algebras of sl(n), Algebras Represent. Theory, 22, 177-209 (2019) · Zbl 1473.17044 · doi:10.1007/s10468-017-9761-5
[1051] Tsymbaliuk, A., Classical limits of quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra, 221, 2633-2646 (2017) · Zbl 1419.17024 · doi:10.1016/j.jpaa.2017.02.004
[1052] Costello, K., M-theory in the Omega-background and five-dimensional non-commutative gauge theory (2016)
[1053] Bourgine, J-E; Jeong, S., New quantum toroidal algebras from 5D \(####\) instantons on orbifolds, J. High Energy Phys. (2020) · doi:10.1007/jhep05(2020)127
[1054] Zenkevich, Y., Higgsed networks, J. High Energy Phys. (2021) · Zbl 1521.81404 · doi:10.1007/JHEP12(2021)034
[1055] Feigin, B.; Hoshino, A.; Shibahara, J.; Shiraishi, J.; Yanagida, S., Kernel function and quantum algebras (2010)
[1056] Avan, J.; Frappat, L.; Ragoucy, E., Deformed Virasoro algebras from elliptic quantum algebras, Commun. Math. Phys., 354, 753-773 (2017) · Zbl 1425.17033 · doi:10.1007/s00220-017-2909-7
[1057] Gaiotto, D.; Rapčák, M., Vertex algebras at the corner, J. High Energy Phys. (2019) · Zbl 1409.81148 · doi:10.1007/jhep01(2019)160
[1058] Bershtein, M.; Gavrylenko, P.; Marshakov, A., Twist-field representations of W-algebras, exact conformal blocks and character identities, J. High Energy Phys. (2018) · Zbl 1396.81164 · doi:10.1007/jhep08(2018)108
[1059] Kimura, T.; Pestun, V., Fractional quiver W-algebras, Lett. Math. Phys., 108, 2425-2451 (2018) · Zbl 1402.81245 · doi:10.1007/s11005-018-1087-7
[1060] Linshaw, A. R., Universal two-parameter \(####\)-algebra and vertex algebras of type \(####\), Compos. Math., 157, 12-82 (2021) · Zbl 1489.17025 · doi:10.1112/s0010437x20007514
[1061] Bastian, B.; Hohenegger, S.; Iqbal, A.; Rey, S-J, Triality in little string theories, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.046004
[1062] Arakawa, T., Representation theory of W-algebras and Higgs branch conjecture, 1261-1278 (2018)
[1063] Costello, K.; Gaiotto, D., Vertex operator algebras and 3D \(####\) gauge theories, J. High Energy Phys. (2019) · Zbl 1416.81185 · doi:10.1007/JHEP05(2019)018
[1064] Frenkel, E.; Gaiotto, D., Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks, Commun. Number Theor. Phys., 14, 199-313 (2020) · Zbl 1445.14024 · doi:10.4310/cntp.2020.v14.n2.a1
[1065] Harada, K.; Matsuo, Y., Plane partition realization of (web of) \(####\)-algebra minimal models, J. High Energy Phys. (2019) · Zbl 1411.81209 · doi:10.1007/JHEP02(2019)050
[1066] Rapcak, M.; Soibelman, Y.; Yang, Y.; Zhao, G., Cohomological Hall algebras, vertex algebras and instantons, Commun. Math. Phys., 376, 1803-1873 (2019) · Zbl 1508.81977 · doi:10.1007/s00220-019-03575-5
[1067] Costello, K.; Creutzig, T.; Gaiotto, D., Higgs and Coulomb branches from vertex operator algebras, J. High Energy Phys. (2019) · Zbl 1414.81234 · doi:10.1007/jhep03(2019)066
[1068] Li, W.; Longhi, P., Gluing two affine Yangians of \(####\), J. High Energy Phys. (2019) · doi:10.1007/jhep10(2019)131
[1069] Kimura, T.; Pestun, V., Twisted reduction of quiver W-algebras (2019)
[1070] Gaiotto, D.; Oh, J., Aspects of Ω-deformed M-theory (2019)
[1071] Rapčák, M., On extensions of \(####\) Kac-Moody algebras and Calabi-Yau singularities, J. High Energy Phys. (2020) · Zbl 1434.81045 · doi:10.1007/JHEP01(2020)042
[1072] Li, W., Gluing affine Yangians with bi-fundamentals, J. High Energy Phys. (2020) · doi:10.1007/jhep06(2020)182
[1073] Valeri, D., W-algebras via Lax type operators (2020)
[1074] Sala, F.; Schiffmann, O., Cohomological Hall algebra of Higgs sheaves on a curve, Algebr. Geom., 346-376 (2020) · Zbl 1467.14034 · doi:10.14231/AG-2020-010
[1075] Zhao, Y., On the K-theoretic Hall algebra of a surface, Int. Math. Res. Not., 2021, 4445-4486 (2020) · Zbl 1475.19005 · doi:10.1093/imrn/rnaa123
[1076] Kapranov, M.; Vasserot, E., The cohomological Hall algebra of a surface and factorization cohomology (2019)
[1077] Porta, M.; Sala, F., Two-dimensional categorified Hall algebras (2019)
[1078] Zhu, R-D, An elliptic vertex of Awata-Feigin-Shiraishi type for M-strings, J. High Energy Phys. (2018) · Zbl 1396.83055 · doi:10.1007/jhep08(2018)050
[1079] Foda, O.; Zhu, R-D, An elliptic topological vertex, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1411.17025 · doi:10.1088/1751-8121/aae654
[1080] Gu, J.; Klemm, A.; Sun, K.; Wang, X., Elliptic blowup equations for 6D SCFTs: II. Exceptional cases, J. High Energy Phys. (2019) · doi:10.1007/jhep12(2019)039
[1081] Mironov, A.; Morozov, A.; Shakirov, S., Conformal blocks as Dotsenko-Fateev integral discriminants, Int. J. Mod. Phys. A, 25, 3173-3207 (2010) · Zbl 1193.81091 · doi:10.1142/s0217751x10049141
[1082] Mironov, A.; Morozov, A.; Shakirov, S., On ‘Dotsenko-Fateev’ representation of the toric conformal blocks, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1209.81172 · doi:10.1088/1751-8113/44/8/085401
[1083] Sulkowski, P., Matrix models for β-ensembles from Nekrasov partition functions, J. High Energy Phys. (2010) · Zbl 1272.81172 · doi:10.1007/JHEP04(2010)063
[1084] Eguchi, T.; Maruyoshi, K., Seiberg-Witten theory, matrix model and AGT relation, J. High Energy Phys. (2010) · Zbl 1290.81063 · doi:10.1007/jhep07(2010)081
[1085] Itoyama, H.; Maruyoshi, K.; Oota, T., The quiver matrix model and 2D-4D conformal connection, Prog. Theor. Phys., 123, 957-987 (2010) · Zbl 1195.81103 · doi:10.1143/ptp.123.957
[1086] Mironov, A. D.; Morozov, A. Y.; Popolitov, A. V.; Shakirov, S. R., Resolvents and Seiberg-Witten representation for a Gaussian β-ensemble, Theor. Math. Phys., 171, 505-522 (2012) · Zbl 1274.81103 · doi:10.1007/s11232-012-0049-y
[1087] Schiappa, R.; Wyllard, N., An A(r) threesome: matrix models, 2D conformal field theories, and 4D N = 2 gauge theories, J. Math. Phys., 51 (2010) · Zbl 1312.81108 · doi:10.1063/1.3449328
[1088] Fujita, M.; Hatsuda, Y.; Tai, T-S, Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model, J. High Energy Phys. (2010) · Zbl 1271.81130 · doi:10.1007/jhep03(2010)046
[1089] Mironov, A.; Morozov, A.; Shakirov, S., Brezin-Gross-Witten model as ‘pure gauge’ limit of Selberg integrals, J. High Energy Phys. (2011) · Zbl 1301.81151 · doi:10.1007/jhep03(2011)102
[1090] Baek, J-H, Genus one correction to Seiberg-Witten prepotential from β-deformed matrix model, J. High Energy Phys. (2013) · doi:10.1007/jhep04(2013)120
[1091] Mizoguchi, S.; Otsuka, H.; Tashiro, H., Unitary matrix with a Penner-like potential also yields N_f = 2, Phys. Lett. B, 800 (2020) · Zbl 1434.81069 · doi:10.1016/j.physletb.2019.135075
[1092] Zhang, H.; Matsuo, Y., Selberg integral and SU(N) AGT conjecture, J. High Energy Phys. (2011) · doi:10.1007/jhep12(2011)106
[1093] Maruyoshi, K.; Yagi, F., Seiberg-Witten curve via generalized matrix model, J. High Energy Phys. (2011) · Zbl 1214.81227 · doi:10.1007/jhep01(2011)042
[1094] Bonelli, G.; Maruyoshi, K.; Tanzini, A.; Yagi, F., Generalized matrix models and AGT correspondence at all genera, J. High Energy Phys. (2011) · Zbl 1298.81160 · doi:10.1007/jhep07(2011)055
[1095] Itoyama, H.; Oota, T., Method of generating q-expansion coefficients for conformal block and N = 2 Nekrasov function by β-deformed matrix model, Nucl. Phys. B, 838, 298-330 (2010) · Zbl 1206.81102 · doi:10.1016/j.nuclphysb.2010.05.002
[1096] Morozov, A.; Shakirov, S., The matrix model version of AGT conjecture and CIV-DV prepotential, J. High Energy Phys. (2010) · Zbl 1291.81263 · doi:10.1007/jhep08(2010)066
[1097] Alexandrov, A., Matrix models for random partitions, Nucl. Phys. B, 851, 620-650 (2011) · Zbl 1229.81211 · doi:10.1016/j.nuclphysb.2011.06.007
[1098] Itoyama, H.; Yonezawa, N., -corrected Seiberg-Witten prepotential obtained from half genus expansion in beta-deformed matrix model, Int. J. Mod. Phys. A, 26, 3439-3467 (2011) · Zbl 1247.81386 · doi:10.1142/s0217751x11053882
[1099] Nishinaka, T.; Rim, C., -deformed matrix model and Nekrasov partition function, J. High Energy Phys. (2012) · doi:10.1007/jhep02(2012)114
[1100] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Quantum hitchin systems via β deformed matrix models, Commun. Math. Phys., 358, 1041-1064 (2018) · Zbl 1386.81140 · doi:10.1007/s00220-017-3053-0
[1101] Mironov, A.; Morozov, A.; Zakirova, Z., Comment on integrability in Dijkgraaf-Vafa beta-ensembles, Phys. Lett. B, 711, 332-335 (2012) · doi:10.1016/j.physletb.2012.04.036
[1102] Bourgine, J-E, Large N limit of beta-ensembles and deformed Seiberg-Witten relations, J. High Energy Phys. (2012) · Zbl 1397.81138 · doi:10.1007/JHEP08(2012)046
[1103] Bourgine, J-E, Large N techniques for Nekrasov partition functions and AGT conjecture, J. High Energy Phys. (2013) · doi:10.1007/jhep05(2013)047
[1104] Piatek, M.; Pietrykowski, A. R., Classical limit of irregular blocks and Mathieu functions, J. High Energy Phys. (2016) · Zbl 1388.81364 · doi:10.1007/JHEP01(2016)115
[1105] Piatek, M. R.; Pietrykowski, A. R., Irregular blocks, N = 2 gauge theory and Mathieu system, J. Phys.: Conf. Ser., 670 (2016) · doi:10.1088/1742-6596/670/1/012041
[1106] Itoyama, H.; Oota, T.; Yano, K., Discrete Painlevé system and the double scaling limit of the matrix model for irregular conformal block and gauge theory, Phys. Lett. B, 789, 605-609 (2019) · Zbl 1406.81061 · doi:10.1016/j.physletb.2018.10.077
[1107] Itoyama, H.; Oota, T.; Yano, K., Discrete Painlevé system for the partition function of N_f = 2 SU(2) supersymmetric gauge theory and its double scaling limit, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81588 · doi:10.1088/1751-8121/ab3f4f
[1108] Itoyama, H.; Oota, T.; Yano, K., Multicritical points of unitary matrix model with logarithmic potential identified with Argyres-Douglas points, Int. J. Mod. Phys. A, 35, 2050146 (2020) · doi:10.1142/s0217751x20501468
[1109] He, Y-H; McKay, J., N = 2 gauge theories: congruence subgroups, coset graphs, and modular surfaces, J. Math. Phys., 54 (2013) · Zbl 1290.81067 · doi:10.1063/1.4772976
[1110] Nemkov, N., S-duality as Fourier transform for arbitrary ϵ_1, ϵ_2, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1286.81138 · doi:10.1088/1751-8113/47/10/105401
[1111] Galakhov, D.; Mironov, A.; Morozov, A., S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality, J. High Energy Phys. (2014) · doi:10.1007/jhep06(2014)050
[1112] Kashani-Poor, A-K; Troost, J., Quantum geometry from the toroidal block, J. High Energy Phys. (2014) · Zbl 1333.81371 · doi:10.1007/jhep08(2014)117
[1113] Nemkov, N., On modular transformations of toric conformal blocks, J. High Energy Phys. (2015) · Zbl 1388.81687 · doi:10.1007/jhep10(2015)039
[1114] Iqbal, A.; Qureshi, B. A.; Shabbir, K., (q, t) identities and vertex operators, Mod. Phys. Lett. A, 31, 1650065 (2016) · Zbl 1339.81066 · doi:10.1142/s0217732316500656
[1115] Beccaria, M.; Macorini, G., Exact partition functions for the Ω-deformed \(####\) SU(2) gauge theory, J. High Energy Phys. (2016) · Zbl 1390.81735 · doi:10.1007/JHEP07(2016)066
[1116] Nemkov, N., On new exact conformal blocks and Nekrasov functions, J. High Energy Phys. (2016) · Zbl 1390.81531 · doi:10.1007/jhep12(2016)017
[1117] Ashok, S. K.; Billo, M.; Dell’Aquila, E.; Frau, M.; Lerda, A.; Moskovic, M.; Raman, M., Chiral observables and S-duality in N = 2* U(N) gauge theories, J. High Energy Phys. (2016) · Zbl 1390.81559 · doi:10.1007/JHEP11(2016)020
[1118] Beccaria, M.; Fachechi, A.; Macorini, G.; Martina, L., Exact partition functions for deformed \(####\) theories with N_f = 4 flavours, J. High Energy Phys. (2016) · Zbl 1390.81563 · doi:10.1007/JHEP12(2016)029
[1119] Nemkov, N., Analytic properties of the Virasoro modular kernel, Eur. Phys. J. C, 77, 368 (2017) · doi:10.1140/epjc/s10052-017-4947-x
[1120] Grassi, A.; Gu, J., Argyres-Douglas theories, Painlevé II and quantum mechanics, J. High Energy Phys. (2019) · Zbl 1411.81207 · doi:10.1007/JHEP02(2019)060
[1121] Marshakov, A. V., On gauge theories as matrix models, Teor. Mat. Fiz., 169, 391-412 (2011) · Zbl 1274.81213 · doi:10.1007/s11232-011-0146-3
[1122] Itoyama, H.; Oota, T., A_n^(1) affine quiver matrix model, Nucl. Phys. B, 852, 336-351 (2011) · Zbl 1229.81239 · doi:10.1016/j.nuclphysb.2011.07.001
[1123] Morozov, A. Y., Challenges of β-deformation, Theor. Math. Phys., 173, 1417-1437 (2012) · Zbl 1280.81111 · doi:10.1007/s11232-012-0123-5
[1124] Morozov, A., Faces of matrix models, JETP Lett., 95, 586-593 (2012) · doi:10.1134/s0021364012110069
[1125] Oota, T., β-deformed matrix models and Nekrasov partition function, Int. J. Mod. Phys.: Conf. Ser., 21, 92-100 (2013) · doi:10.1142/s2010194513009434
[1126] Bourgine, J-E, Notes on Mayer expansions and matrix models, Nucl. Phys. B, 880, 476-503 (2014) · Zbl 1284.82030 · doi:10.1016/j.nuclphysb.2014.01.017
[1127] Russo, J. G., gauge theories and quantum phases, J. High Energy Phys. (2014) · doi:10.1007/jhep12(2014)169
[1128] Manabe, M.; Sułkowski, P., Quantum curves and conformal field theory, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.126003
[1129] Itoyama, H.; Oota, T.; Suyama, T.; Yoshioka, R., Cubic constraints for the resolvents of the ABJM matrix model and its cousins, Int. J. Mod. Phys. A, 32, 1750056 (2017) · Zbl 1366.81225 · doi:10.1142/s0217751x17500567
[1130] Bonelli, G.; Grassi, A.; Tanzini, A., New results in \(####\) theories from non-perturbative string, Ann. Henri Poincaré, 19, 743-774 (2018) · Zbl 1386.81137 · doi:10.1007/s00023-017-0643-5
[1131] Mironov, A.; Morozov, A., On determinant representation and integrability of Nekrasov functions, Phys. Lett. B, 773, 34-46 (2017) · Zbl 1378.81046 · doi:10.1016/j.physletb.2017.08.004
[1132] Morozov, A., On W-representations of β- and q, t-deformed matrix models, Phys. Lett. B, 792, 205-213 (2019) · Zbl 1416.81110 · doi:10.1016/j.physletb.2019.03.047
[1133] He, W., Spectra of elliptic potentials and supersymmetric gauge theories, J. High Energy Phys. (2020) · Zbl 1454.81229 · doi:10.1007/jhep08(2020)070
[1134] Itoyama, H.; Mironov, A.; Morozov, A., Complete solution to Gaussian tensor model and its integrable properties, Phys. Lett. B, 802 (2020) · Zbl 1435.81166 · doi:10.1016/j.physletb.2020.135237
[1135] Shakirov, S., Applications of Macdonald ensembles, PhD Thesis (2015), Berkeley
[1136] de Carmo Vaz, R. N M., Resurgence and the large N expansion, PhD Thesis, p 08 (2015)
[1137] Raman, M., Modular structures in superconformal field theories, PhD Thesis (2018), Chennai
[1138] Zhou, Y., Wilson loop in N = 2 quiver/M theory gravity duality (2009)
[1139] Chen, B.; Colgain, E. O.; Wu, J-B; Yavartanoo, H., N = 2 SCFTs: an M5-brane perspective, J. High Energy Phys. (2010) · Zbl 1272.81146 · doi:10.1007/JHEP04(2010)078
[1140] Ó Colgáin, E.; Wu, J-B; Yavartanoo, H., Supersymmetric AdS_3 × S^2 M-theory geometries with fluxes, J. High Energy Phys. (2010) · doi:10.1007/jhep08(2010)114
[1141] Fujita, M., M5-brane defect and quantum Hall effect in AdS_4 × N(1, 1)/N = 3 superconformal field theory \(####\) SCFT, Phys. Rev. D, 83 (2011) · doi:10.1103/physrevd.83.105016
[1142] Colgain, E. O.; Stefanski, B. Jr, A search for AdS_5 × S^2 IIB supergravity solutions dual to N = 2 SCFTs, J. High Energy Phys. (2011) · Zbl 1303.81132 · doi:10.1007/JHEP10(2011)061
[1143] Nishinaka, T., The gravity duals of SO/USp superconformal quivers, J. High Energy Phys. (2012) · doi:10.1007/jhep07(2012)080
[1144] Billó, M.; Frau, M.; Giacone, L.; Lerda, A.; Anagnostopoulos, K.; Bakas, I.; Irges, N.; Kalinowski, J.; Kehagias, A.; Pittau, R.; Rebelo, M. N.; Wolschin, G.; Zoupanos, G., Non-perturbative aspects of gauge/gravity duality, p 112 (2013)
[1145] Bah, I., Quarter-BPS AdS_5 solutions in M-theory with a T^2 bundle over a Riemann surface, J. High Energy Phys. (2013) · doi:10.1007/jhep08(2013)137
[1146] Bah, I.; Gabella, M.; Halmagyi, N., Punctures from probe M5-branes and \(####\) superconformal field theories, J. High Energy Phys. (2014) · doi:10.1007/jhep07(2014)131
[1147] Beccaria, M.; Macorini, G.; Tseytlin, A. A., Supergravity one-loop corrections on AdS_7 and AdS_3, higher spins and AdS/CFT, Nucl. Phys. B, 892, 211-238 (2015) · Zbl 1328.81189 · doi:10.1016/j.nuclphysb.2015.01.014
[1148] Bah, I., AdS_5 solutions from M5-branes on Riemann surface and D6-branes sources, J. High Energy Phys. (2015) · doi:10.1007/jhep09(2015)163
[1149] Rota, A., Holography for six-dimensional theories a universal framework, PhD Thesis (2015)
[1150] Bobev, N.; Crichigno, P. M., Universal RG flows across dimensions and holography, J. High Energy Phys. (2017) · Zbl 1383.81186 · doi:10.1007/jhep12(2017)065
[1151] Fluder, M., Kähler uniformization from holographic renormalization group flows of M5-branes, J. High Energy Phys. (2018) · Zbl 1396.83062 · doi:10.1007/JHEP08(2018)046
[1152] Fluder, M., 4D \(####/2\) D Yang-Mills duality in holography, J. High Energy Phys. (2018) · Zbl 1396.81133 · doi:10.1007/JHEP08(2018)038
[1153] Núñez, C.; Roychowdhury, D.; Speziali, S.; Zacarías, S., Holographic aspects of four dimensional N = 2 SCFTs and their marginal deformations \(####\) SCFTs and their marginal deformations, Nucl. Phys. B, 943 (2019) · Zbl 1415.81091 · doi:10.1016/j.nuclphysb.2019.114617
[1154] Bobev, N.; Gautason, F. F.; Hristov, K., Holographic dual of the Ω-background, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.021901
[1155] Genolini, P. B.; Richmond, P., Topological AdS/CFT and the Ω deformation, J. High Energy Phys. (2019) · doi:10.1007/jhep10(2019)115
[1156] Filippas, K., Nonintegrability of the Ω deformation, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.046025
[1157] Klare, C.; Zaffaroni, A., Extended supersymmetry on curved spaces, J. High Energy Phys. (2013) · Zbl 1342.83028 · doi:10.1007/jhep10(2013)218
[1158] Imamura, Y.; Matsuno, H., Supersymmetric backgrounds from 5D N = 1 supergravity, J. High Energy Phys. (2014) · doi:10.1007/JHEP07(2014)055
[1159] Kim, J.; Kim, S.; Lee, K.; Park, J., Super-Yang-Mills theories on \(####\), J. High Energy Phys. (2014) · doi:10.1007/jhep08(2014)167
[1160] Pestun, V.; Teschner, J., Localization for \(####\) supersymmetric gauge theories in four dimensions, New Dualities of Supersymmetric Gauge Theories, 159-194 (2016) · Zbl 1334.81071
[1161] Bak, D.; Gustavsson, A., Partially twisted superconformal M5 brane in R-symmetry gauge field backgrounds, J. High Energy Phys. (2015) · Zbl 1388.81625 · doi:10.1007/jhep12(2015)093
[1162] Fucito, F.; Morales, J. F.; Poghossian, R., Wilson loops and chiral correlators on squashed spheres, J. Geom. Phys., 118, 169-180 (2017) · Zbl 1369.81066 · doi:10.1016/j.geomphys.2016.09.004
[1163] Pestun, V.; Zabzine, M., Introduction to localization in quantum field theory, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1386.81117 · doi:10.1088/1751-8121/aa5704
[1164] Beccaria, M.; Fachechi, A.; Macorini, G., Chiral trace relations in Ω-deformed \(####\) theories, J. High Energy Phys. (2017) · Zbl 1380.81386 · doi:10.1007/JHEP05(2017)023
[1165] Hayling, J.; Panerai, R.; Papageorgakis, C., Deconstructing little strings with \(####\) gauge theories on ellipsoids, SciPost Phys., 4, 042 (2018) · doi:10.21468/scipostphys.4.6.042
[1166] Fachechi, A.; Macorini, G.; Beccaria, M., Chiral trace relations in \(####\) supersymmetric gauge theories, Teor. Mat. Fiz., 196, 390-403 (2018) · Zbl 1406.81060 · doi:10.1134/s0040577918090039
[1167] Festuccia, G.; Qiu, J.; Winding, J.; Zabzine, M., Twisting with a flip (the art of pestunization), Commun. Math. Phys., 377, 341-385 (2020) · Zbl 1440.81065 · doi:10.1007/s00220-020-03681-9
[1168] Russo, J. G., A note on perturbation series in supersymmetric gauge theories, J. High Energy Phys. (2012) · Zbl 1397.81178 · doi:10.1007/jhep06(2012)038
[1169] Schiappa, R.; Vaz, R., The resurgence of instantons: multi-cut Stokes phases and the Painlevé II equation, Commun. Math. Phys., 330, 655-721 (2014) · Zbl 1312.81092 · doi:10.1007/s00220-014-2028-7
[1170] Aniceto, I.; Russo, J. G.; Schiappa, R., Resurgent analysis of localizable observables in supersymmetric gauge theories, J. High Energy Phys. (2015) · Zbl 1388.81738 · doi:10.1007/jhep03(2015)172
[1171] Basar, G.; Dunne, G. V., Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, J. High Energy Phys. (2015) · doi:10.1007/jhep02(2015)160
[1172] Ashok, S. K.; Jatkar, D. P.; John, R. R.; Raman, M.; Troost, J., Exact WKB analysis of \(####\) gauge theories, J. High Energy Phys. (2016) · doi:10.1007/jhep07(2016)115
[1173] Dunne, G. V., Resurgence, Painlevé equations and conformal blocks, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.34099 · doi:10.1088/1751-8121/ab3142
[1174] Papadodimas, K., Topological anti-topological fusion in four-dimensional superconformal field theories, J. High Energy Phys. (2010) · Zbl 1290.81077 · doi:10.1007/jhep08(2010)118
[1175] Cecotti, S.; Gaiotto, D.; Vafa, C., tt^* geometry in three and four dimensions, J. High Energy Phys. (2014) · Zbl 1333.81163 · doi:10.1007/JHEP05(2014)055
[1176] Baggio, M.; Niarchos, V.; Papadodimas, K., tt^* equations, localization and exact chiral rings in 4D N = 2 SCFTs, J. High Energy Phys. (2015) · doi:10.1007/jhep02(2015)122
[1177] Beem, C.; Lemos, M.; Liendo, P.; Peelaers, W.; Rastelli, L.; van Rees, B. C., Infinite chiral symmetry in four dimensions, Commun. Math. Phys., 336, 1359-1433 (2015) · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[1178] Beem, C.; Peelaers, W.; Rastelli, L.; van Rees, B. C., Chiral algebras of class \(####\), J. High Energy Phys. (2015) · Zbl 1388.81766 · doi:10.1007/JHEP05(2015)020
[1179] Cordova, C.; Shao, S-H, Schur indices, BPS particles, and Argyres-Douglas theories, J. High Energy Phys. (2016) · Zbl 1388.81116 · doi:10.1007/jhep01(2016)040
[1180] Liendo, P.; Ramirez, I.; Seo, J., Stress-tensor OPE in \(####\) superconformal theories, J. High Energy Phys. (2016) · Zbl 1388.81682 · doi:10.1007/JHEP02(2016)019
[1181] Cecotti, S.; Song, J.; Vafa, C.; Yan, W., Superconformal index, BPS monodromy and chiral algebras, J. High Energy Phys. (2017) · Zbl 1383.81192 · doi:10.1007/jhep11(2017)013
[1182] Lemos, M.; Liendo, P., central charge bounds from 2D chiral algebras, J. High Energy Phys. (2016) · Zbl 1388.81057 · doi:10.1007/JHEP04(2016)004
[1183] Nishinaka, T.; Tachikawa, Y., On 4D rank-one \(####\) superconformal field theories, J. High Energy Phys. (2016) · doi:10.1007/jhep09(2016)116
[1184] Buican, M.; Nishinaka, T., Conformal manifolds in four dimensions and chiral algebras, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1353.81105 · doi:10.1088/1751-8113/49/46/465401
[1185] Xie, D.; Yan, W.; Yau, S-T, Chiral algebra of the Argyres-Douglas theory from M5 branes, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.065003
[1186] Córdova, C.; Gaiotto, D.; Shao, S-H, Infrared computations of defect Schur indices, J. High Energy Phys. (2016) · Zbl 1390.81583 · doi:10.1007/jhep11(2016)106
[1187] Lemos, M.; Liendo, P.; Meneghelli, C.; Mitev, V., Bootstrapping \(####\) superconformal theories, J. High Energy Phys. (2017) · Zbl 1378.81142 · doi:10.1007/JHEP04(2017)032
[1188] Beem, C.; Rastelli, L.; van Rees, B. C., More \(####\) superconformal bootstrap, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.046014
[1189] Bonetti, F.; Rastelli, L., Supersymmetric localization in AdS_5 and the protected chiral algebra, J. High Energy Phys. (2018) · doi:10.1007/jhep08(2018)098
[1190] Song, J., Macdonald index and chiral algebra, J. High Energy Phys. (2017) · Zbl 1381.81123 · doi:10.1007/jhep08(2017)044
[1191] Fredrickson, L.; Pei, D.; Yan, W.; Ye, K., Argyres-Douglas theories, chiral algebras and wild Hitchin characters, J. High Energy Phys. (2018) · Zbl 1384.81099 · doi:10.1007/jhep01(2018)150
[1192] Córdova, C.; Gaiotto, D.; Shao, S-H, Surface defects and chiral algebras, J. High Energy Phys. (2017) · Zbl 1380.81393 · doi:10.1007/jhep05(2017)140
[1193] Song, J.; Xie, D.; Yan, W., Vertex operator algebras of Argyres-Douglas theories from M5-branes, J. High Energy Phys. (2017) · Zbl 1383.81170 · doi:10.1007/jhep12(2017)123
[1194] Buican, M.; Laczko, Z.; Nishinaka, T., S-duality revisited, J. High Energy Phys. (2017) · Zbl 1382.81172 · doi:10.1007/JHEP09(2017)087
[1195] Neitzke, A.; Yan, F., Line defect Schur indices, Verlinde algebras and U(1)_r fixed points, J. High Energy Phys. (2017) · doi:10.1007/jhep11(2017)035
[1196] Pan, Y.; Peelaers, W., Chiral algebras, localization and surface defects, J. High Energy Phys. (2018) · Zbl 1387.81356 · doi:10.1007/jhep02(2018)138
[1197] Fluder, M.; Song, J., Four-dimensional lens space index from two-dimensional chiral algebra, J. High Energy Phys. (2018) · Zbl 1395.81215 · doi:10.1007/jhep07(2018)073
[1198] Choi, J.; Nishinaka, T., On the chiral algebra of Argyres-Douglas theories and S-duality, J. High Energy Phys. (2018) · Zbl 1390.81499 · doi:10.1007/jhep04(2018)004
[1199] Niarchos, V., Geometry of Higgs-branch superconformal primary bundles, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.065012
[1200] Bonetti, F.; Meneghelli, C.; Rastelli, L., VOAs labelled by complex reflection groups and 4D SCFTs, J. High Energy Phys. (2019) · doi:10.1007/jhep05(2019)155
[1201] Arakawa, T., Chiral algebras of class \(####\) and Moore-Tachikawa symplectic varieties (2018)
[1202] Kiyoshige, K.; Nishinaka, T., OPE selection rules for Schur multiplets in 4D \(####\) superconformal field theories, J. High Energy Phys. (2019) · Zbl 1415.81084 · doi:10.1007/JHEP04(2019)060
[1203] Mezei, M.; Pufu, S. S.; Wang, Y., Chern-Simons theory from M5-branes and calibrated M2-branes, J. High Energy Phys. (2019) · Zbl 1421.81098 · doi:10.1007/jhep08(2019)165
[1204] Buican, M.; Laczko, Z., Rationalizing CFTs and anyonic imprints on Higgs branches, J. High Energy Phys. (2019) · Zbl 1414.81196 · doi:10.1007/jhep03(2019)025
[1205] Xie, D.; Yan, W., W algebras cosets and VOAs for 4D \(####\) SCFTs from M5 branes, J. High Energy Phys. (2021) · doi:10.1007/JHEP04(2021)076
[1206] Beem, C.; Meneghelli, C.; Rastelli, L., Free field realizations from the Higgs branch, J. High Energy Phys. (2019) · doi:10.1007/jhep09(2019)058
[1207] Oh, J.; Yagi, J., Chiral algebras from Ω-deformation, J. High Energy Phys. (2019) · doi:10.1007/jhep08(2019)143
[1208] Jeong, S., SCFT/VOA correspondence via Ω-deformation, J. High Energy Phys. (2019) · doi:10.1007/jhep10(2019)171
[1209] Dedushenko, M.; Fluder, M., Chiral algebra, localization, modularity, surface defects, and all that, J. Math. Phys., 61 (2020) · Zbl 1456.81368 · doi:10.1063/5.0002661
[1210] Xie, D.; Yan, W., Schur sector of Argyres-Douglas theory and W-algebra, SciPost Phys., 10, 080 (2021) · doi:10.21468/scipostphys.10.3.080
[1211] Auger, J.; Creutzig, T.; Kanade, S.; Rupert, M., Braided tensor categories related to \(####\) vertex algebras, Commun. Math. Phys., 378, 219-260 (2020) · Zbl 1495.17037 · doi:10.1007/s00220-020-03747-8
[1212] Watanabe, A.; Zhu, R-D, Testing Macdonald index as a refined character of chiral algebra, J. High Energy Phys. (2020) · Zbl 1435.81223 · doi:10.1007/jhep02(2020)004
[1213] Xie, D.; Yan, W., 4D \(####\) SCFTs and lisse W-algebras, J. High Energy Phys. (2021) · doi:10.1007/jhep04(2021)271
[1214] Saberi, I.; Williams, B. R., Superconformal algebras and holomorphic field theories (2019)
[1215] Bianchi, L.; Lemos, M., Superconformal surfaces in four dimensions, J. High Energy Phys. (2020) · Zbl 1437.81074 · doi:10.1007/jhep06(2020)056
[1216] Dedushenko, M., From VOAs to short star products in SCFT, Commun. Math. Phys., 384, 245-277 (2021) · Zbl 1462.81170 · doi:10.1007/s00220-021-04066-2
[1217] Adamovic, D.; Creutzig, T.; Genra, N.; Yang, J., The vertex algebras \(####\) and \(####\), Commun. Math. Phys., 383, 1207-1241 (2021) · Zbl 1461.81107 · doi:10.1007/s00220-021-03950-1
[1218] Chester, S. M.; Lee, J.; Pufu, S. S.; Yacoby, R., Exact correlators of BPS operators from the 3D superconformal bootstrap, J. High Energy Phys. (2015) · Zbl 1388.81711 · doi:10.1007/jhep03(2015)130
[1219] Beem, C.; Peelaers, W.; Rastelli, L., Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys., 354, 345-392 (2017) · Zbl 1375.81227 · doi:10.1007/s00220-017-2845-6
[1220] Dedushenko, M.; Fan, Y.; Pufu, S. S.; Yacoby, R., Coulomb branch operators and Mirror symmetry in three dimensions, J. High Energy Phys. (2018) · Zbl 1390.81502 · doi:10.1007/jhep04(2018)037
[1221] Chester, S. M.; Perlmutter, E., M-theory reconstruction from (2, 0) CFT and the chiral algebra conjecture, J. High Energy Phys. (2018) · Zbl 1396.81170 · doi:10.1007/jhep08(2018)116
[1222] Dedushenko, M.; Wang, Y., 4D/2D → 3D/1D: a song of protected operator algebras (2019)
[1223] Spiridonov, V., Elliptic beta integrals and solvable models of statistical mechanics, Contemp. Math., 563, 181-211 (2012) · Zbl 1244.82019 · doi:10.1090/conm/563/11170
[1224] Yamazaki, M., Quivers, YBE and three-manifolds, J. High Energy Phys. (2012) · doi:10.1007/jhep05(2012)147
[1225] Yagi, J., Quiver gauge theories and integrable lattice models, J. High Energy Phys. (2015) · Zbl 1388.81452 · doi:10.1007/jhep10(2015)065
[1226] Yamazaki, M.; Yan, W., Integrability from 2D \(####\) dualities, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1326.81215 · doi:10.1088/1751-8113/48/39/394001
[1227] Yamazaki, M., Cluster-enriched Yang-Baxter equation from SUSY gauge theories, Lett. Math. Phys., 108, 1137-1146 (2018) · Zbl 1384.16026 · doi:10.1007/s11005-017-1038-8
[1228] Yagi, J., Surface defects and elliptic quantum groups, J. High Energy Phys. (2017) · Zbl 1380.81157 · doi:10.1007/jhep06(2017)013
[1229] Jafarzade, S.; Nazari, Z., A new integrable Ising-type model from 2D \(####\) dualities (2017)
[1230] Yamazaki, M., Integrability as duality: the gauge/YBE correspondence, Phys. Rep., 859, 1-20 (2020) · Zbl 1472.81213 · doi:10.1016/j.physrep.2020.01.006
[1231] Yamazaki, M., Quantum trilogy: discrete Toda, Y-system and chaos, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1387.81227 · doi:10.1088/1751-8121/aaa08e
[1232] Yamazaki, M., Entanglement in theory space, Europhys. Lett., 103 (2013) · doi:10.1209/0295-5075/103/21002
[1233] Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodrıguez-Gómez, D., Exact deconstruction of the 6D (2, 0) theory, J. High Energy Phys. (2017) · Zbl 1380.83235 · doi:10.1007/jhep06(2017)072
[1234] El-Showk, S.; Paulos, M. F.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.025022
[1235] Beem, C.; Lemos, M.; Liendo, P.; Rastelli, L.; van Rees, B. C., The \(####\) superconformal bootstrap, J. High Energy Phys. (2016) · doi:10.1007/jhep03(2016)183
[1236] Poghossian, R., Recursion relations in CFT and N = 2 SYM theory, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/12/038
[1237] Hadasz, L.; Jaskolski, Z.; Suchanek, P., Recursive representation of the torus one-point conformal block, J. High Energy Phys. (2010) · doi:10.1007/jhep01(2010)063
[1238] Fateev, V. A.; Litvinov, A. V., On AGT conjecture, J. High Energy Phys. (2010) · Zbl 1270.81203 · doi:10.1007/jhep02(2010)014
[1239] Suchanek, P., Elliptic recursion for four-point superconformal blocks and bootstrap in N = 1 SLFT, J. High Energy Phys. (2011) · doi:10.1007/jhep02(2011)090
[1240] Nemkov, N., On fusion kernel in Liouville theory, Theor. Math. Phys., 189, 2 (2016) · doi:10.1134/s0040577916110040
[1241] Nemkov, N. A., Fusion transformations in Liouville theory, Theor. Math. Phys., 189, 1574-1591 (2016) · Zbl 1361.81139 · doi:10.1134/s0040577916110040
[1242] Cho, M.; Collier, S.; Yin, X., Recursive representations of arbitrary Virasoro conformal blocks, J. High Energy Phys. (2019) · Zbl 1415.81075 · doi:10.1007/jhep04(2019)018
[1243] Poghossian, R.; Poghossian, R., Recurrence relations for the \(####\) conformal blocks and \(####\) SYM partition functions. Recurrence relations for the \(####\) conformal blocks and \(####\) SYM partition functions, J. High Energy Phys.. J. High Energy Phys. (2018) · Zbl 1384.81138 · doi:10.1007/JHEP01(2018)088
[1244] Belavin, V.; Geiko, R., c-recursion for multi-point superconformal blocks. NS sector, J. High Energy Phys. (2018) · Zbl 1396.81162 · doi:10.1007/jhep08(2018)112
[1245] Fateev, V.; Ribault, S., The large central charge limit of conformal blocks, J. High Energy Phys. (2012) · Zbl 1309.81154 · doi:10.1007/jhep02(2012)001
[1246] Litvinov, A.; Lukyanov, S.; Nekrasov, N.; Zamolodchikov, A., Classical conformal blocks and Painlevé VI, J. High Energy Phys. (2014) · Zbl 1333.81375 · doi:10.1007/jhep07(2014)144
[1247] Honda, D.; Komatsu, S., Classical Liouville three-point functions from Riemann-Hilbert analysis, J. High Energy Phys. (2014) · doi:10.1007/jhep03(2014)038
[1248] Perlmutter, E., Virasoro conformal blocks in closed form, J. High Energy Phys. (2015) · Zbl 1388.81690 · doi:10.1007/jhep08(2015)088
[1249] Alkalaev, K. B.; Belavin, V. A., Classical conformal blocks via AdS/CFT correspondence, J. High Energy Phys. (2015) · Zbl 1388.83157 · doi:10.1007/jhep08(2015)049
[1250] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Semiclassical Virasoro blocks from AdS_3 gravity, J. High Energy Phys. (2015) · doi:10.1007/jhep12(2015)077
[1251] Fitzpatrick, A. L.; Kaplan, J.; Walters, M. T.; Wang, J., Hawking from Catalan, J. High Energy Phys. (2016) · Zbl 1388.83240 · doi:10.1007/jhep05(2016)069
[1252] Alkalaev, K.; Belavin, V., Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys. B, 904, 367-385 (2016) · Zbl 1332.81198 · doi:10.1016/j.nuclphysb.2016.01.019
[1253] Beccaria, M.; Fachechi, A.; Macorini, G., Virasoro vacuum block at next-to-leading order in the heavy-light limit, J. High Energy Phys. (2016) · Zbl 1388.81629 · doi:10.1007/jhep02(2016)072
[1254] Fitzpatrick, A. L.; Kaplan, J., Conformal blocks beyond the semi-classical limit, J. High Energy Phys. (2016) · Zbl 1388.83441 · doi:10.1007/jhep05(2016)075
[1255] Banerjee, P.; Datta, S.; Sinha, R., Higher-point conformal blocks and entanglement entropy in heavy states, J. High Energy Phys. (2016) · Zbl 1388.83171 · doi:10.1007/jhep05(2016)127
[1256] Poghosyan, H.; Poghossian, R.; Sarkissian, G., The light asymptotic limit of conformal blocks in Toda field theory, J. High Energy Phys. (2016) · Zbl 1388.81223 · doi:10.1007/jhep05(2016)087
[1257] Chen, B.; Wu, J-q; Zhang, J-j, Holographic description of 2D conformal block in semi-classical limit, J. High Energy Phys. (2016) · Zbl 1390.83096 · doi:10.1007/jhep10(2016)110
[1258] Alkalaev, K.; Belavin, V., Holographic duals of large-c torus conformal blocks, J. High Energy Phys. (2017) · Zbl 1383.81173 · doi:10.1007/jhep10(2017)140
[1259] Lencsés, M.; Novaes, F., Classical conformal blocks and accessory parameters from isomonodromic deformations, J. High Energy Phys. (2018) · Zbl 1390.81524 · doi:10.1007/jhep04(2018)096
[1260] Campoleoni, A.; Fredenhagen, S.; Raeymaekers, J., Quantizing higher-spin gravity in free-field variables, J. High Energy Phys. (2018) · Zbl 1387.83023 · doi:10.1007/jhep02(2018)126
[1261] Bombini, A.; Giusto, S.; Russo, R., A note on the Virasoro blocks at order 1/c, Eur. Phys. J. C, 79, 3 (2019) · doi:10.1140/epjc/s10052-018-6522-5
[1262] Besken, M.; Datta, S.; Kraus, P., Semi-classical Virasoro blocks: proof of exponentiation, J. High Energy Phys. (2020) · Zbl 1434.81095 · doi:10.1007/JHEP01(2020)109
[1263] Hikida, Y.; Uetoko, T., Conformal blocks from Wilson lines with loop corrections, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.086014
[1264] Babaro, J. P.; Giribet, G.; Ranjbar, A., Conformal field theories from deformations of theories with W_n symmetry, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.086001
[1265] Stanishkov, M., Second order RG flow in general \(####\) coset models, J. High Energy Phys. (2016) · Zbl 1390.81542 · doi:10.1007/JHEP09(2016)040
[1266] Dupic, T.; Estienne, B.; Ikhlef, Y., The imaginary Toda field theory, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1507.81164 · doi:10.1088/1751-8121/aafeaa
[1267] Santachiara, R.; Tanzini, A., Moore-read fractional quantum Hall wave functions and SU(2) quiver gauge theories, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.126006
[1268] Kimura, T., Spinless basis for spin-singlet FQH states, Prog. Theor. Phys., 128, 829-843 (2012) · doi:10.1143/ptp.128.829
[1269] Ganor, O. J.; Hong, Y. P.; Moore, N.; Sun, H-Y; Tan, H. S.; Torres-Chicon, N. R., Q-balls of quasi-particles in a (2, 0)-theory model of the fractional quantum Hall effect, J. High Energy Phys. (2015) · Zbl 1388.81530 · doi:10.1007/jhep09(2015)181
[1270] Vafa, C., Fractional quantum Hall effect and M-theory (2015)
[1271] Ikeda, K., Quantum Hall effect and Langlands program, Ann. Phys., NY, 397, 136-150 (2018) · Zbl 1397.81462 · doi:10.1016/j.aop.2018.08.002
[1272] Bergamin, R., FQHE and tt^* geometry, PhD Thesis (2019), Trieste
[1273] Tai, T-S, Uniformization, Calogero-Moser/Heun duality and Sutherland/bubbling pants, J. High Energy Phys. (2010) · Zbl 1291.81271 · doi:10.1007/jhep10(2010)107
[1274] Menotti, P., Riemann-Hilbert treatment of Liouville theory on the torus: the general case, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1225.81124 · doi:10.1088/1751-8113/44/33/335401
[1275] Ferrari, F.; Piatek, M., Liouville theory, N = 2 gauge theories and accessory parameters, J. High Energy Phys. (2012) · Zbl 1348.32005 · doi:10.1007/JHEP05(2012)025
[1276] Nagoya, H.; Yamada, Y., Symmetries of quantum Lax equations for the Painlevé equations, Ann. Henri Poincaré, 15, 313-344 (2014) · Zbl 1288.81062 · doi:10.1007/s00023-013-0237-9
[1277] Gamayun, O.; Iorgov, N.; Lisovyy, O.; Gamayun, O.; Iorgov, N.; Lisovyy, O., Conformal field theory of Painlevé VI. Conformal field theory of Painlevé VI, J. High Energy Phys.. J. High Energy Phys. (2012) · doi:10.1007/jhep10(2012)183
[1278] Menotti, P., Accessory parameters for Liouville theory on the torus, J. High Energy Phys. (2012) · Zbl 1397.81312 · doi:10.1007/jhep12(2012)001
[1279] Gamayun, O.; Iorgov, N.; Lisovyy, O., How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys. A: Math. Theor., 46 (2013) · Zbl 1282.34096 · doi:10.1088/1751-8113/46/33/335203
[1280] Menotti, P., Hyperbolic deformation of the strip-equation and the accessory parameters for the torus, J. High Energy Phys. (2013) · Zbl 1342.81507 · doi:10.1007/jhep09(2013)132
[1281] Eynard, B.; Ribault, S., Lax matrix solution of c = 1 conformal field theory, J. High Energy Phys. (2014) · doi:10.1007/jhep02(2014)059
[1282] Iorgov, N.; Lisovyy, O.; Tykhyy, Y., Painlevé VI connection problem and monodromy ofc = 1 conformal blocks, J. High Energy Phys. (2013) · Zbl 1342.81500 · doi:10.1007/JHEP02(2014)059
[1283] Piatek, M., Classical torus conformal block, N = 2* twisted superpotential and the accessory parameter of Lamé equation, J. High Energy Phys. (2014) · doi:10.1007/jhep03(2014)124
[1284] Iorgov, N.; Lisovyy, O.; Teschner, J., Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys., 336, 671-694 (2015) · Zbl 1311.30029 · doi:10.1007/s00220-014-2245-0
[1285] Its, A.; Lisovyy, O.; Tykhyy, Y., Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks (2014)
[1286] Balogh, F., Discrete matrix models for partial sums of conformal blocks associated to Painlevé transcendents, Nonlinearity, 28, 43 (2014) · Zbl 1309.33022 · doi:10.1088/0951-7715/28/1/43
[1287] Gavrylenko, P., Isomonodromic τ-functions and W_N conformal blocks, J. High Energy Phys. (2015) · doi:10.1007/jhep09(2015)167
[1288] da Cunha, B. C.; Novaes, F., Kerr scattering coefficients via isomonodromy, J. High Energy Phys. (2015) · Zbl 1388.83513 · doi:10.1007/jhep11(2015)144
[1289] Gavrylenko, P.; Marshakov, A., Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations, J. High Energy Phys. (2016) · Zbl 1388.81665 · doi:10.1007/jhep02(2016)181
[1290] Carneiro da Cunha, B.; Novaes, F., Kerr-de Sitter greybody factors via isomonodromy, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.024045
[1291] Ferrari, F.; Piątek, M. R.; Pietrykowski, A. R., 2D CFT/Gauge/Bethe correspondence and solvable quantum-mechanical systems, J. Phys.: Conf. Ser., 670 (2016) · doi:10.1088/1742-6596/670/1/012022
[1292] Gavrylenko, P. G.; Marshakov, A. V., Free fermions, W-algebras, and isomonodromic deformations, Theor. Math. Phys., 187, 649-677 (2016) · Zbl 1346.81118 · doi:10.1134/s0040577916050044
[1293] Gavrylenko, P.; Lisovyy, O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, Commun. Math. Phys., 363, 1-58 (2018) · Zbl 1414.34072 · doi:10.1007/s00220-018-3224-7
[1294] Bershtein, M. A.; Shchechkin, A. I., Bäcklund transformation of Painlevé III(D_8) τ function, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1396.33038 · doi:10.1088/1751-8121/aa59c9
[1295] Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé/gauge theory correspondence, Lett. Math. Phys., 107, 2359-2413 (2017) · Zbl 1380.34130 · doi:10.1007/s11005-017-0983-6
[1296] Gavrylenko, P.; Lisovyy, O.; Kashani-Poor, A-K; Minasian, R.; Nekrasov, N.; Pioline, B., Pure SU(2) gauge theory partition function and generalized Bessel kernel, vol 18, 181-205 (2018)
[1297] Bershtein, M.; Gavrylenko, P.; Marshakov, A., Cluster integrable systems, q-Painlevé equations and their quantization, J. High Energy Phys. (2018) · Zbl 1387.83078 · doi:10.1007/JHEP02(2018)077
[1298] Gavrylenko, P.; Iorgov, N.; Lisovyy, O., Higher-rank isomonodromic deformations and W-algebras, Lett. Math. Phys., 110, 327-364 (2019) · Zbl 1433.81097 · doi:10.1007/s11005-019-01207-6
[1299] Lisovyy, O.; Nagoya, H.; Roussillon, J., Irregular conformal blocks and connection formulae for Painlevé V functions, J. Math. Phys., 59 (2018) · Zbl 1404.33020 · doi:10.1063/1.5031841
[1300] Gavrylenko, P.; Iorgov, N.; Iorgov, N.; Lisovyy, O., On solutions of the Fuji-Suzuki-Tsuda system, Symmetry, Integrability Geometry Methods Appl., 14, 123 (2018) · Zbl 1412.34243 · doi:10.3842/sigma.2018.123
[1301] Anselmo, T.; Nelson, R.; Carneiro da Cunha, B.; Crowdy, D. G., Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painlevé VI, Proc. R. Soc. A, 474, 20180080 (2018) · Zbl 1404.30006 · doi:10.1098/rspa.2018.0080
[1302] Novaes, F.; Marinho, C.; Lencsés, M.; Casals, M., Kerr-de Sitter quasinormal modes via accessory parameter expansion, J. High Energy Phys. (2019) · Zbl 1416.83059 · doi:10.1007/jhep05(2019)033
[1303] Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A., gauge theory, free fermions on the torus and Painlevé VI, Commun. Math. Phys., 377, 1381-1419 (2020) · Zbl 1444.37055 · doi:10.1007/s00220-020-03743-y
[1304] Iwaki, K., Two-parameter τ-function for the first painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis, Commun. Math. Phys., 377, 1047-1098 (2020) · Zbl 1448.81324 · doi:10.1007/s00220-020-03769-2
[1305] Carneiro da Cunha, B.; Cavalcante, J. P., Confluent conformal blocks and the Teukolsky master equation, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.105013
[1306] David, F.; Kupiainen, A.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., 342, 869-907 (2016) · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[1307] Vargas, V., Lecture notes on Liouville theory and the DOZZ formula (2017)
[1308] Balasubramanian, A.; Teschner, J.; Kashani-Poor, A-K; Minasian, R.; Nekrasov, N.; Pioline, B., Supersymmetric field theories and geometric Langlands: the other side of the coin, vol 98, 79-105 (2018) · Zbl 1452.81160
[1309] Schweigert, C.; Teschner, J.; Haller, J.; Grefe, M., Topological field theories from and for 4D SUSY gauge theories, Particles, Strings and the Early Universe: The Structure of Matter and Space-Time, 89-102 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.