×

Liouville quantum gravity on the Riemann sphere. (English) Zbl 1336.83042

Summary: In this paper, we rigorously construct Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by A. M. Polyakov [“Quantum geometry of bosonic strings”, Phys. Lett., B 103, No. 3, 207–210 (1981; doi:10.1016/0370-2693(81)90743-7)]. We establish some of its fundamental properties like conformal covariance under \(\mathrm{PSL}_2(\mathbb C)\)-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly formula. We also make precise conjectures about the relationship of the theory to scaling limits of random planar maps conformally embedded onto the sphere.

MSC:

83E30 String and superstring theories in gravitational theory
83C45 Quantization of the gravitational field
81T20 Quantum field theory on curved space or space-time backgrounds
53Z05 Applications of differential geometry to physics
37K65 Hamiltonian systems on groups of diffeomorphisms and on manifolds of mappings and metrics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
60G60 Random fields

References:

[1] Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four dimensional gauge theories. Lett. Math. Phys. 91, 167-197 (2010) · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[2] Ambjorn J., Durhuus B., Jonsson T.: Quantum Geometry: a statistical field theory approach. Cambridge Monographs on Mathematical Physics, Cambridge (2005) · Zbl 0993.82500
[3] Andres, S., Kajino, N.: Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions. arXiv:1407.3240 · Zbl 1353.60073
[4] Astala K., Kupiainen A., Saksman E., Jones P.: Random conformal weldings. Acta Math. 207(2), 203-254 (2011) · Zbl 1253.30032 · doi:10.1007/s11511-012-0069-3
[5] Aru, J.: KPZ relation does not hold for the level lines and the SLE flow lines of the Gaussian free field. arXiv:1312.1324 · Zbl 1327.60166
[6] Barral J., Jin X., Rhodes R., Vargas V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323(2), 451-485 (2013) · Zbl 1287.83019 · doi:10.1007/s00220-013-1769-z
[7] Berestycki N.: Diffusion in planar Liouville quantum gravity. Ann. Inst. Poincaré Probab. Stat. 51(3), 947-964 (2015) · Zbl 1325.60125 · doi:10.1214/14-AIHP605
[8] Berestycki, N., Garban, C., Rhodes, R., Vargas, V.: KPZ formula derived from Liouville heat kernel. arXiv:1406.7280 · Zbl 1356.60119
[9] Brown L.: Stress-tensor trace anomaly in a gravitational metric: scalar fields. Phys. Rev. D 15, 1469-1483 (1976) · doi:10.1103/PhysRevD.15.1469
[10] Capper D.M., Duff M.J.: Trace anomalies in dimensional regularization. Nuovo Cimento A 23, 173 (1974) · doi:10.1007/BF02748300
[11] Coleman S., Jackiw R.: Why dilatation generators do not generate dilatations. Ann. Phys. 67, 552-598 (1971) · doi:10.1016/0003-4916(71)90153-9
[12] Curien N.: A glimpse of the conformal structure of random planar maps. Commun. Math. Phys. 333(3), 1417-1463 (2015) · Zbl 1356.60165 · doi:10.1007/s00220-014-2196-5
[13] Curien N., LeGall J.F.: The Brownian plane. J. Theory. Probab. 27, 1249-1291 (2014) · Zbl 1305.05208 · doi:10.1007/s10959-013-0485-0
[14] Daley D.J., Vere-Jones D.: An Introduction to the Theory of Point Processes. Springer, Berlin (1988) · Zbl 0657.60069
[15] David F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651-1656 (1988) · doi:10.1142/S0217732388001975
[16] David F., Bauer M.: Another derivation of the geometrical KPZ relations. J. Stat. Mech. 0903, P03004 (2009) · Zbl 1456.81323
[17] Di Francesco P., Kutasov D.: World-sheet and space-time physics in two-dimensional (super) string theory. Nucl. Phys. B 375, 119-170 (1992) · doi:10.1016/0550-3213(92)90337-B
[18] Distler J., Kawai H.: Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B 321, 509-517 (1989) · doi:10.1016/0550-3213(89)90354-4
[19] Dorn H., Otto H.-J.: Two and three-point functions in Liouville theory. Nucl. Phys. B 429, 375-388 (1994) · Zbl 1020.81770 · doi:10.1016/0550-3213(94)00352-1
[20] Dotsenko V.I.S., Fateev V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ≤ 1. Nucl. Phys. B 251, 691-734 (1985) · doi:10.1016/S0550-3213(85)80004-3
[21] Dubédat J.: SLE and the free field: partition functions and couplings. J. AMS 22(4), 995-1054 (2009) · Zbl 1204.60079
[22] Duff M.J.: Observations on conformal anomalies. Nucl. Phys. B 125, 334-348 (1977) · doi:10.1016/0550-3213(77)90410-2
[23] Duplantier, B.: A rigorous perspective on Liouville quantum gravity and KPZ. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L.F. (eds.) Exact Methods in Low-dimensional Statistical Physics and Quantum Computing. Lecture Notes of the Les Houches Summer School, July 2008, vol. 89. Oxford University Press, Clarendon, Oxford (2010) · Zbl 1208.83040
[24] Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Inventiones Mathematicae 185(2), 333-393 (2011) · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[25] Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees. arXiv:1409.7055 (2014) · Zbl 1503.60003
[26] Duplantier B., Rhodes R., Sheffield S., Vargas V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. 42(5), 1769-1808 (2014) · Zbl 1306.60055 · doi:10.1214/13-AOP890
[27] Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Log-correlated Gaussian fields: an overview. arXiv:1407.5605 · Zbl 1366.60023
[28] Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ formula. Commun. Math. Phys. 330, 283-330 (2014). arXiv:1212.0529v2 · Zbl 1297.60033
[29] Garban, C.: Quantum gravity and the KPZ formula, séminaire Bourbaki, 64e année, 2011-2012, no 1052 · Zbl 1356.60165
[30] Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian Motion. arXiv:1301.2876v2 [math.PR] · Zbl 1393.60015
[31] Garban C., Rhodes R., Vargas V.: On the heat kernel and the Dirichlet form of Liouville Brownian Motion. Electron. J. Probab. 19(96), 1-25 (2014) · Zbl 1334.60175 · doi:10.1155/2014/839204
[32] Gawedzki, K.: Lectures on conformal field theory. In Quantum Fields and Strings: A Course for Mathematicians, (Princeton, NJ, 1996/1997), vols. 1, 2, p. 727805. American Mathematical Society, Providence (1999) · Zbl 1170.81430
[33] Gill J., Rhode S.: On the Riemann surface type of random planar maps. Revista Mat. Iberoamericana 29, 1071-1090 (2013) · Zbl 1275.30007 · doi:10.4171/RMI/749
[34] Goulian M., Li M.: Correlation functions in Liouville theory. Phys. Rev. Lett. 66(16), 2051-2055 (1991) · doi:10.1103/PhysRevLett.66.2051
[35] Gupta A., Trivedi S.P., Wise M.B.: Random surfaces in conformal gauge. Nucl. Phys. B 340, 475-490 (1990) · doi:10.1016/0550-3213(90)90455-M
[36] Gwynne, A., Sun, Xin: Scaling limits for the critical Fortuin-Kastelyn model on a random planar map III: finite volume case. arXiv:1510.06346 [math.PR] · Zbl 1365.60028
[37] Harlow, D., Maltz, J., Witten, E.: Analytic continuation of Liouville theory. J. High Energy Phys. 71 (2011). arXiv:1108.4417 [hep-th] · Zbl 1306.81287
[38] Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105-150 (1985) · Zbl 0596.60041
[39] Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett A 3(8), 819-826 (1988) · doi:10.1142/S0217732388000982
[40] Klebanov, I.: String theory in two dimensions. arXiv:hep-th/9108019. (lectures at the 1991 ICTP Spring School) · Zbl 1021.81837
[41] Lacoin, H., Rhodes, R., Vargas, V.: Large deviations for random surfaces: the hyperbolic nature of Liouville field theory. arXiv:1401.6001 · Zbl 1367.81068
[42] Kostov, I.; Akemann, G. (ed.); Baik, J. (ed.); Di Francesco, P. (ed.), Two-dimensional quantum gravity (2011), Oxford · Zbl 1236.81166
[43] Ledoux M.: The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001) · Zbl 0995.60002
[44] Le Gall J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880-2960 (2013) · Zbl 1282.60014 · doi:10.1214/12-AOP792
[45] Madaule, T., Rhodes, R., Vargas, V.: Glassy phase an freezing of log-correlated Gaussian potentials. Ann. Appl. Probab. arXiv:1310.5574 (to appear) · Zbl 1341.60094
[46] Maillard, P., Rhodes, R., Vargas, V., Zeitouni, O.: Liouville heat kernel: regularity and bounds. arXiv:1406.0491v2 (to appear in Annales de l’institut Henri Poincaré PS) · Zbl 1359.35088
[47] Miermont G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319-401 (2013) · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[48] Miller, J., Sheffield, S.: Quantum Loewner evolution. arXiv:1312.5745 · Zbl 1364.82023
[49] Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Mod. Phys. A 19, 2771-2930 (2004) · Zbl 1080.81056 · doi:10.1142/S0217751X04019500
[50] Polyakov A.M.: Quantum geometry of bosonic strings. Phys. Lett. 103B, 207 (1981) · doi:10.1016/0370-2693(81)90743-7
[51] Ray D.B., Singer I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145-210 (1971) · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[52] Rhodes R., Vargas V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[53] Rhodes R., Vargas V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358 (2011) · Zbl 1268.60070 · doi:10.1051/ps/2010007
[54] Rhodes R., Vargas V.: Spectral dimension of Liouville quantum gravity. Ann. Henri Poincaré 15(12), 2281-2298 (2014) · Zbl 1305.83036 · doi:10.1007/s00023-013-0308-y
[55] Rhodes R., Vargas V.: Liouville Brownian motion at criticality. Potential Anal. 43, 149-197 (2015) · Zbl 1333.81224 · doi:10.1007/s11118-015-9467-4
[56] Sarnak, P.; Rabinowitz, P. (ed.), Determinants of Laplacians, heights and finiteness, 601-622 (1990), New York · Zbl 0703.53037
[57] Seiberg N.: Notes on quantum Liouville theory and quantum gravity. Progr. Theor. Phys. suppl. 102, 319-349 (1990) · Zbl 0790.53059 · doi:10.1143/PTPS.102.319
[58] Shamov, A.: On Gaussian multiplicative chaos. arXiv:1407.4418 · Zbl 1337.60054
[59] Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Rel. Fields 139, 521-541 (2007) · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[60] Sheffield S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. arXiv:1012.4797 · Zbl 1388.60144
[61] Teschner, J.: On the Liouville three point function. Phys. Lett. B 363, 65-70. arXiv:hep-th/9507109 (1995)
[62] Troyanov M.: Prescribing curvature on compact surfaces with conical singularities. Trans. AMS 324(2), 793-821 (1991) · Zbl 0724.53023 · doi:10.1090/S0002-9947-1991-1005085-9
[63] Tutte W.T.: A census of planar maps. Can. J. Math. 15, 249-271 (1963) · Zbl 0115.17305 · doi:10.4153/CJM-1963-029-x
[64] Zamolodchikov A.B, Zamolodchikov A.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577-605 (1996) · Zbl 0925.81301 · doi:10.1016/0550-3213(96)00351-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.