×

Spectral networks and Fenchel-Nielsen coordinates. (English) Zbl 1345.32020

Ten years ago V. Fock and A. Goncharov studied moduli spaces of local systems. Certain coordinate systems on moduli spaces of flat connections are induced by spectral networks in a natural way. In the present paper, the authors extend this method by incorporating the complexified Fenchel-Nielson coordinates. The main result here is that abelianization provides a new way of thinking about this classical object. It is briefly reviewed what is meant by the process of nonabelianization. This process is formalized by focusing on the case of \(\mathrm{SL}(2)\)-connections. The paper starts with the definition of a spectral network and introduces various examples. Two special types of spectral network lead to Fock-Goncharov and Fenchel-Nielson coordinate systems. The physical motivation comes from the link between spectral networks and \(\mathcal N=2\) supersymmetric quantum field theories. The present paper gives a new way of understanding the role of Fenchel-Nielson coordinates in these theories. A second interesting consequence of this discussion concerns the physics of line defects. The new point of view is that these defects are Wilson lines for the \(\mathrm{SU}(2)\) gauge symmetry in the fundamental representation.

MSC:

32L05 Holomorphic bundles and generalizations
30F60 Teichmüller theory for Riemann surfaces
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Ann. Henri. Poincare. 14, 1643-1731 (2013). doi:10.1007/s00023-013-0238-8 · Zbl 1288.81132
[2] Gaiotto, D.: N = 2 dualities. J. High. Energy. Phys. 8, 34 (2012). doi:10.1007/JHEP08(2012)034 · Zbl 1397.81362
[3] Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. (2009) arXiv:0907.3987 · Zbl 1358.81150
[4] Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks and snakes. Ann. Henri. Poincare. 15, 61-141 (2014). doi:10.1007/s00023-013-0238-8 · Zbl 1301.81262
[5] Galakhov, D., Longhi, P., Mainiero, T., Moore, G.W., Neitzke, A.: Wild wall crossing and BPS Giants. J. High. Energy. Phys. 11, 46. doi:10.1007/JHEP11(2013)046
[6] Hori, K., Park, C.Y., Tachikawa, Y.: 2d SCFTs from M2-branes. J. High. Energy. Phys. 11, 147 (2013). doi:10.1007/JHEP11(2013)147 · Zbl 0496.30039
[7] Maruyoshi, K., Park, C.Y., Yan, W.: BPS spectrum of Argyres-Douglas theory via spectral network. (2013) arXiv:1309.3050 · Zbl 0816.32017
[8] Aoki, T., Kawai, T., Sasaki, S., Shudo, A., Takei, Y.: Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations. J. Phys. A 38(15), 3317-3336 (2005). doi:10.1088/0305-4470/38/15/007 · Zbl 1073.34098
[9] Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1-211 (2006). arXiv:math/0311149 · Zbl 1099.14025
[10] Fenchel, W., Nielsen, J.: Discontinuous groups of isometries in the hyperbolic plane. de. Gruyter. Stud. Math. 29 (2003) · Zbl 1022.51016
[11] Wolpert S.: The length spectra as moduli for compact Riemann surfaces. Ann. Math. 109, 323-351 (1979) · Zbl 0441.30055 · doi:10.2307/1971114
[12] Wolpert S.: The Fenchel-Nielsen deformation. Ann. Math. 115, 501-528 (1982) · Zbl 0496.30039 · doi:10.2307/2007011
[13] Kourouniotis C.: Complex length coordinates for quasi-Fuchsian groups. Mathematika 41, 173-188 (1994) · Zbl 0801.30036 · doi:10.1112/S0025579300007270
[14] Tan S.P.: Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures. Int. J. Math. 5, 239-251 (1994) · Zbl 0816.32017 · doi:10.1142/S0129167X94000140
[15] Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216, 69-93 (2011). doi:10.1016/j.nuclphysbps.2011.04.150 · Zbl 1308.81133
[16] Witten, E.: Solutions of four-dimensional field theories via M-theory. Nucl. Phys. B 500, 3-42 (1997). arXiv:hep-th/9703166 · Zbl 0934.81066
[17] Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional Gauge theories. Lett. Math. Phys. 91, 167-197 (2010). arXiv:0906.3219 · Zbl 1185.81111
[18] Teschner, J.: Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15, 471-564 (2011). arXiv:1005.2846 · Zbl 1442.81059
[19] Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71-129 (2012). doi:10.1007/s00220-012-1485-0 · Zbl 1257.81056
[20] Liu J.: Jenkins-Strebel differentials with poles. Comment. Math. Helv. 83, 211-240 (2008) · Zbl 1237.30014 · doi:10.4171/CMH/123
[21] Hubbard J., Masur H.: Quadratic differentials and foliations. Acta Math. 142, 221-274 (1979) · Zbl 0415.30038 · doi:10.1007/BF02395062
[22] Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix. (1998). arXiv:math.QA/9802054 · Zbl 0945.53050
[23] Atiyah M.F., Bott R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308(1505), 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[24] Fock, V.: Dual Teichmüller spaces. Am. Math. Soc. Transl. 191, 67-86 (1999) arXiv:dg-ga/9702018 · Zbl 0822.57009
[25] Kabaya, Y.: Parametrization of PSL(2,C)—representations of surface groups. Geom. Dedicata. 170(1), 9-62 (2014) arXiv:1110.6674 · Zbl 1290.30054
[26] Okai T.: Effects of a change of pants decompositions on their Fenchel-Nielsen coordinates. Kobe J. Math. 10, 215-223 (1993) · Zbl 0822.57009
[27] Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[28] Simpson C.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3, 713-770 (1990) · Zbl 0713.58012 · doi:10.1090/S0894-0347-1990-1040197-8
[29] Drukker, N., Morrison, D.R., Okuda, T.: Loop operators and S-duality from curves on Riemann surfaces. J. High. Energy. Phys. 9, 31 (2009). doi:10.1088/1126-6708/2009/09/031 · Zbl 0415.30038
[30] Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. Adv. Theor. Math. Phys. 17(2), 241-397 (2013). doi:10.4310/ATMP.2013.v17.n2.a1 · Zbl 1290.81146
[31] Cordova, C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. J. High. Energy. Phys. 9, 99 (2014). doi:10.1007/JHEP09(2014)099 · Zbl 1333.81166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.