×

Bootstrapping \( \mathcal{N}=3 \) superconformal theories. (English) Zbl 1378.81142

Summary: We initiate the bootstrap program for \( \mathcal{N}=3 \) superconformal field theories (SCFTs) in four dimensions. The problem is considered from two fronts: the protected subsector described by a \(2d\) chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries parametrize the Coulomb branch of \( \mathcal{N}=3 \) theories. With the goal of describing a protected subsector of a family of \( \mathcal{N}=3 \) SCFTs, we propose a new \(2d\) chiral algebra with super Virasoro symmetry that depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the crossing equations, we work out the superconformal block expansion and apply standard numerical bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but also, thanks to input from the chiral algebra results, we are able to exclude solutions with \( \mathcal{N}=4 \) supersymmetry,allowingustozoominonaspecific \( \mathcal{N}=3 \) SCFT.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Software:

Mathematica; SDPB

References:

[1] O. Aharony and M. Evtikhiev, On four dimensional N = 3 superconformal theories, JHEP04 (2016) 040 [arXiv:1512.03524] [INSPIRE]. · Zbl 1388.81617
[2] I. García-Etxebarria and D. Regalado, \[N=3 \mathcal{N}=3\] four dimensional field theories, JHEP03 (2016) 083 [arXiv:1512.06434] [INSPIRE]. · Zbl 1388.81817 · doi:10.1007/JHEP03(2016)083
[3] S. Ferrara, M. Porrati and A. Zaffaroni, N = 6 supergravity on AdS5and the SU(2, 2/3) superconformal correspondence, Lett. Math. Phys.47 (1999) 255 [hep-th/9810063] [INSPIRE]. · Zbl 0945.83032 · doi:10.1023/A:1007592711262
[4] O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP06 (2016) 044 [arXiv:1602.08638] [INSPIRE]. · Zbl 1388.81750 · doi:10.1007/JHEP06(2016)044
[5] I. García-Etxebarria and D. Regalado, \[ExceptionalN=3 \mathcal{N}=3\] theories, arXiv:1611.05769 [INSPIRE].
[6] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs I: physical constraints on relevant deformations, arXiv:1505.04814 [INSPIRE]. · Zbl 1387.81301
[7] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs II: construction of special Kähler geometries and RG flows, arXiv:1601.00011 [INSPIRE]. · Zbl 1387.81300
[8] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape \[ofN=2 \mathcal{N}=2\] rank 1 SCFTs, JHEP05 (2016) 088 [arXiv:1602.02764] [INSPIRE]. · Zbl 1388.81758 · doi:10.1007/JHEP05(2016)088
[9] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs III: enhanced Coulomb branches and central charges, arXiv:1609.04404 [INSPIRE]. · Zbl 1387.81302
[10] P.C. Argyres and M. Martone, \[4dN=2 \mathcal{N}=2\] theories with disconnected gauge groups, arXiv:1611.08602 [INSPIRE].
[11] T. Nishinaka and Y. Tachikawa, On 4d rank-\[oneN=3 \mathcal{N}=3\] superconformal field theories, JHE09 (2016) 116 [arXiv:1602.01503] [INSPIRE]. · Zbl 1390.81217
[12] Y. Imamura and S. Yokoyama, Superconformal index \[ofN=3 \mathcal{N}=3\] orientifold theories, J. Phys.A 49 (2016) 435401 [arXiv:1603.00851] [INSPIRE]. · Zbl 1352.81053
[13] Y. Imamura, H. Kato and D. Yokoyama, Supersymmetry Enhancement and Junctions in S-folds, JHEP10 (2016) 150 [arXiv:1606.07186] [INSPIRE]. · Zbl 1390.81601 · doi:10.1007/JHEP10(2016)150
[14] P. Agarwal and A. Amariti, Notes on S-folds \[andN=3 \mathcal{N}=3\] theories, JHEP09 (2016) 032 [arXiv:1607.00313] [INSPIRE]. · Zbl 1390.81401 · doi:10.1007/JHEP09(2016)032
[15] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[16] D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067 · doi:10.1007/JHEP05(2011)017
[17] D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE]. · doi:10.1007/JHEP05(2012)110
[18] M. Berkooz, R. Yacoby and A. Zait, Bounds \[onN=1 \mathcal{N}=1\] superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.1501 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1333.81361
[19] D. Poland and A. Stergiou, Exploring the Minimal \[4DN=1 \mathcal{N}=1\] SCFT, JHEP12 (2015) 121 [arXiv:1509.06368] [INSPIRE]. · Zbl 1388.81691
[20] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, \[TheN=2 \mathcal{N}=2\] superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482 · doi:10.1007/JHEP03(2016)183
[21] C. Beem, L. Rastelli and B.C. van Rees, \[TheN=4 \mathcal{N}=4\] superconformal bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · doi:10.1103/PhysRevLett.111.071601
[22] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP09 (2014) 144 [arXiv:1310.3757] [INSPIRE]. · doi:10.1007/JHEP09(2014)144
[23] L.F. Alday and A. Bissi, Generalized bootstrap equations \[forN=4 \mathcal{N}=4\] SCFT, JHEP02 (2015) 101 [arXiv:1404.5864] [INSPIRE]. · Zbl 1388.81098
[24] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, \[TheN=8 \mathcal{N}=8\] superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE]. · doi:10.1007/JHEP09(2014)143
[25] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP03 (2015) 130 [arXiv:1412.0334] [INSPIRE]. · Zbl 1388.81711 · doi:10.1007/JHEP03(2015)130
[26] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental symmetries and the conformal bootstrap, JHEP01 (2016) 110 [arXiv:1507.04424] [INSPIRE]. · Zbl 1388.81382 · doi:10.1007/JHEP01(2016)110
[27] D. Bashkirov, Bootstrapping \[theN=1 \mathcal{N}=1\] SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
[28] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional supersymmetric Ising model, Phys. Rev. Lett.115 (2015) 051601 [arXiv:1502.04124] [INSPIRE]. · doi:10.1103/PhysRevLett.115.051601
[29] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[30] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev.D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
[31] F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys.B 629 (2002) 3 [hep-th/0112251] [INSPIRE]. · Zbl 1039.81551 · doi:10.1016/S0550-3213(02)00096-2
[32] F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP09 (2004) 056 [hep-th/0405180] [INSPIRE]. · doi:10.1088/1126-6708/2004/09/056
[33] M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys.B 711 (2005) 409 [hep-th/0407060] [INSPIRE]. · Zbl 1109.81350 · doi:10.1016/j.nuclphysb.2005.01.013
[34] J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in superconformal theories, JHEP09 (2011) 071 [arXiv:1107.1721] [INSPIRE]. · Zbl 1301.81252 · doi:10.1007/JHEP09(2011)071
[35] A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant approaches to superconformal blocks, JHEP08 (2014) 129 [arXiv:1402.1167] [INSPIRE]. · doi:10.1007/JHEP08(2014)129
[36] Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \[N=1 \mathcal{N}=1\] superconformal blocks for general scalar operators, JHEP08 (2014) 049 [arXiv:1404.5300] [INSPIRE]. · doi:10.1007/JHEP08(2014)049
[37] A. Bissi and T. Lukowski, \[RevisitingN=4 \mathcal{N}=4\] superconformal blocks, JHEP02 (2016) 115 [arXiv:1508.02391] [INSPIRE]. · Zbl 1388.81637 · doi:10.1007/JHEP02(2016)115
[38] R. Doobary and P. Heslop, Superconformal partial waves in Grassmannian field theories, JHEP12 (2015) 159 [arXiv:1508.03611] [INSPIRE]. · Zbl 1388.81652
[39] Z. Li and N. Su, The Most General \[4DN=1 \mathcal{N}=1\] Superconformal Blocks for Scalar Operators, JHEP05 (2016) 163 [arXiv:1602.07097] [INSPIRE]. · Zbl 1388.81573 · doi:10.1007/JHEP05(2016)163
[40] P. Liendo and C. Meneghelli, Bootstrap equations \[forN=4 \mathcal{N}=4\] SYM with defects, JHEP01 (2017) 122 [arXiv:1608.05126] [INSPIRE]. · Zbl 1373.81334 · doi:10.1007/JHEP01(2017)122
[41] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[42] C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. · Zbl 1388.81766 · doi:10.1007/JHEP05(2015)020
[43] M. Lemos and W. Peelaers, Chiral algebras for trinion theories, JHEP02 (2015) 113 [arXiv:1411.3252] [INSPIRE]. · Zbl 1387.81256 · doi:10.1007/JHEP02(2015)113
[44] O. Chacaltana, J. Distler and A. Trimm, A family of 4D N = 2 interacting SCFTs from the twisted A2Nseries, arXiv:1412.8129 [INSPIRE]. · Zbl 1388.81504
[45] M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys.A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE]. · Zbl 1342.81264
[46] C. Cordova and S.-H. Shao, Schur indices, BPS particles and Argyres-Douglas theories, JHEP01 (2016) 040 [arXiv:1506.00265] [INSPIRE]. · Zbl 1388.81116 · doi:10.1007/JHEP01(2016)040
[47] P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE \[inN=2 \mathcal{N}=2\] superconformal theories, JHEP02 (2016) 019 [arXiv:1509.00033] [INSPIRE]. · Zbl 1388.81682 · doi:10.1007/JHEP02(2016)019
[48] M. Buican and T. Nishinaka, Argyres-douglas theories, the Macdonald index and an RG inequality, JHEP02 (2016) 159 [arXiv:1509.05402] [INSPIRE]. · Zbl 1342.81264 · doi:10.1007/JHEP02(2016)159
[49] J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT, JHEP02 (2016) 045 [arXiv:1509.06730] [INSPIRE]. · Zbl 1388.81701 · doi:10.1007/JHEP02(2016)045
[50] S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal index, BPS monodromy and chiral algebras, arXiv:1511.01516 [INSPIRE]. · Zbl 1383.81192
[51] M. Lemos and P. Liendo, \[N=2 \mathcal{N}=2\] central charge bounds from 2d chiral algebras, JHEP04 (2016) 004 [arXiv:1511.07449] [INSPIRE]. · Zbl 1388.81057
[52] T. Arakawa and K. Kawasetsu, Quasi-lisse vertex algebras and modular linear differential equations, arXiv:1610.05865 [INSPIRE]. · Zbl 1459.17046
[53] M. Buican and T. Nishinaka, Conformal manifolds in four dimensions and chiral algebras, J. Phys.A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE]. · Zbl 1353.81105
[54] C. Cordova, D. Gaiotto and S.-H. Shao, Infrared computations of defect Schur indices, JHEP11 (2016) 106 [arXiv:1606.08429] [INSPIRE]. · Zbl 1390.81583 · doi:10.1007/JHEP11(2016)106
[55] D. Xie, W. Yan and S.-T. Yau, Chiral algebra of Argyres-Douglas theory from M 5 brane, arXiv:1604.02155 [INSPIRE].
[56] V.K. Dobrev and V.B. Petkova, All positive energy unitary irreducible representations of extended conformal supersymmetry, Phys. Lett.B 162 (1985) 127 [INSPIRE]. · doi:10.1016/0370-2693(85)91073-1
[57] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys.2 (1998) 781 [hep-th/9712074] [INSPIRE]. · Zbl 1041.81534 · doi:10.4310/ATMP.1998.v2.n4.a4
[58] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE]. · Zbl 1122.81070 · doi:10.1007/s00220-007-0258-7
[59] C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of superconformal theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE]. · Zbl 1390.81500 · doi:10.1007/JHEP11(2016)135
[60] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE]. · Zbl 1390.81500
[61] F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys.307 (2003) 41 [hep-th/0209056] [INSPIRE]. · Zbl 1035.81056 · doi:10.1016/S0003-4916(03)00074-5
[62] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE]. · Zbl 1339.81089
[63] V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in D = 4, arXiv:1307.8092[INSPIRE]. · Zbl 1388.81750
[64] G. Arutyunov, B. Eden and E. Sokatchev, On nonrenormalization and OPE in superconformal field theories, Nucl. Phys.B 619 (2001) 359 [hep-th/0105254] [INSPIRE]. · Zbl 0991.81107 · doi:10.1016/S0550-3213(01)00529-6
[65] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett.106 (2011) 241602 [arXiv:1104.3850] [INSPIRE]. · doi:10.1103/PhysRevLett.106.241602
[66] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys.319 (2013) 147 [arXiv:1110.3740] [INSPIRE]. · Zbl 1268.81114 · doi:10.1007/s00220-012-1607-8
[67] L. Rastelli and S.S. Razamat, The superconformal index of theories of classS \[\mathcal{S} \], arXiv:1412.7131. · Zbl 1334.81094
[68] S. Krivonos and K. Thielemans, A Mathematica package for computing N = 2 superfield operator product expansions, Class. Quant. Grav.13 (1996) 2899 [hep-th/9512029] [INSPIRE]. · Zbl 0875.81003 · doi:10.1088/0264-9381/13/11/006
[69] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular differential equations, to appear. · Zbl 1396.81191
[70] P. Liendo, C. Meneghelli and V. Mitev, On correlation functions of BPS operators in \[3dN=6 \mathcal{N}=6\] superconformal theories, Commun. Math. Phys.350 (2017) 387 [arXiv:1512.06072] [INSPIRE]. · Zbl 1359.81163 · doi:10.1007/s00220-016-2715-7
[71] S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, arXiv:1601.05000. · Zbl 1365.81007
[72] D. Simmons-Duffin, TASI lectures on the conformal bootstrap, arXiv:1602.07982 [INSPIRE]. · Zbl 1359.81165
[73] D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE]. · doi:10.1007/JHEP06(2015)174
[74] M. Lemos and P. Liendo, \[BootstrappingN=2 \mathcal{N}=2\] chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE]. · Zbl 1388.81056 · doi:10.1007/JHEP01(2016)025
[75] M. Cornagliotto, M. Lemos and V. Schomerus, Long multiplet bootstrap, arXiv:1702.05101. · Zbl 1383.81287
[76] P.C. Argyres and J.R. Wittig, Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories, JHEP01 (2008) 074 [arXiv:0712.2028] [INSPIRE]. · doi:10.1088/1126-6708/2008/01/074
[77] A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP09 (2008) 109 [arXiv:0804.1957] [INSPIRE]. · Zbl 1245.81250 · doi:10.1088/1126-6708/2008/09/109
[78] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the extremal functional method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE]. · doi:10.1103/PhysRevLett.111.241601
[79] C. Beem, L. Rastelli and B.C. van Rees, \[W \mathcal{W}\] symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. · Zbl 1397.81290 · doi:10.1007/JHEP05(2015)017
[80] M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators \[inN=2 \mathcal{N}=2\] SCFTs, JHEP12 (2014) 095 [arXiv:1407.2835] [INSPIRE]. · doi:10.1007/JHEP12(2014)095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.