×

Liouville correlation functions from four-dimensional gauge theories. (English) Zbl 1185.81111

From the text: The authors conjecture an expression for the Liouville theory conformal blocks and correlation functions on a Riemann surface of genus \(g\) and \(n\) punctures as the Nekrasov partition function of a certain class of \(\mathcal{N}=2\) SCFTs recently defined by one of the authors. We conduct extensive tests of the conjecture at genus \(0, 1\).
There is a huge physical and mathematical literature on \(\mathcal{N} =2\) field theories. It is natural to wonder if this class of SCFTs may provide a connection with the large literature on objects defined through the sewing of Riemann surfaces, in particular, the theory of two-dimensional conformal field theories. This paper is devoted to test a specific realization of this general idea: the identification of the Nekrasov partition function [N. A. Nekrasov, Adv. Theor. Math. Phys. 7, 831–864 (2003; Zbl 1056.81068)], and with A. Okounkov, Prog. Math. 244, 525–596 (2006; Zbl 1233.14029)] of these \(\mathcal{N}=2\) SCFTs and the Liouville theory correlation functions on the corresponding Riemann surfaces.
The crucial idea is that for each sewing of the Riemann surface one is given two natural objects: Nekrasov’s instanton computation in the corresponding Lagrangian description of the theory and the “Liouville conformal block” defined by a sum over Virasoro descendants of a primary field in each of the sewing channels. With a judicious identification of the parameters on the two sides, the authors demonstrate by explicit examples that the two objects coincide at genus \(g=0,1\) for various \(n\). They also conjecture the general map at higher genus and number of punctures.
Taking inspiration from V. Pestun’s computation [Commun. Math. Phys. 313, No. 1, 71–129 (2012; Zbl 1257.81056)] of the \(S^4\) partition function of \(\mathcal{N}=2\) SCFTs they assemble together the squared modulus of Nekrasov’s instanton partition function together with tree level and one-loop contributions to produce an \(S\)-duality invariant object, which coincides with the Liouville correlation function on the corresponding punctured Riemann surface. One sees that the product of the Liouville three-point functions neatly recombines into the modulus squared of the one-loop contribution to Nekrasov’s partition function.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
32G81 Applications of deformations of analytic structures to the sciences
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Gaiotto, D.: \({\mathcal{N}=2}\) dualities. arXiv:0904.2715 [hep-th] · Zbl 1204.83002
[2] Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004) arXiv:hep-th/0206161 · Zbl 1056.81068
[3] Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. arXiv:hep-th/0306238 · Zbl 1233.14029
[4] Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. arXiv:0712.2824 [hep-th] · Zbl 1257.81056
[5] Dorn H., Otto H.-J.: Two and three-point functions in Liouville theory. Nucl. Phys. B 429, 375–388 (1994) arXiv:hep-th/9403141 · Zbl 1020.81770 · doi:10.1016/0550-3213(94)00352-1
[6] Zamolodchikov A.B., Zamolodchikov Al.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577–605 (1996) arXiv:hep-th/9506136 · Zbl 0925.81301 · doi:10.1016/0550-3213(96)00351-3
[7] Teschner J.: On the Liouville three point function. Phys. Lett. B 363, 65–70 (1995) arXiv:hep-th/9507109 · doi:10.1016/0370-2693(95)01200-A
[8] Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in \({\mathcal{N}=2}\) supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994) arXiv:hep-th/9408099 · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[9] Dorey N., Khoze V.V., Mattis M.P.: On \({\mathcal{N} = 2}\) supersymmetric QCD with 4 flavors. Nucl. Phys. B 492, 607–622 (1997) arXiv:hep-th/9611016 · Zbl 1004.81563 · doi:10.1016/S0550-3213(97)00132-6
[10] Grimm T.W., Klemm A., Mariño M., Weiss M.: Direct integration of the topological string. JHEP 08, 058 (2007) arXiv:hep-th/0702187 · Zbl 1326.81191 · doi:10.1088/1126-6708/2007/08/058
[11] Hollowood T.J., Iqbal A., Vafa C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008) arXiv:hep-th/0310272 · doi:10.1088/1126-6708/2008/03/069
[12] Iqbal, A., Kozçaz, C., Vafa, C.: The refined topological vertex. arXiv:hep-th/0701156 · Zbl 1207.81123
[13] Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group. arXiv:hep-th/9911110
[14] Teschner J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19(2), 436–458 (2004) arXiv:hep-th/0303150 · Zbl 1080.81060 · doi:10.1142/S0217751X04020567
[15] Teschner, J.: From Liouville theory to the quantum geometry of Riemann surfaces. arXiv:hep-th/0308031 · Zbl 1127.81331
[16] Teschner, J.: An analog of a modular functor from quantized Teichmuller theory. arXiv:math/0510174
[17] Teschner, J.: Nonrational conformal field theory. arXiv:0803.0919 [hep-th] · Zbl 1175.81169
[18] Hadasz, L., Jaskólski, Z., Suchanek, P.: Modular bootstrap in Liouville field theory. arXiv:0911.4296 [hep-th]
[19] Nanopoulos, D.V., Xie, D.: On crossing symmmetry and modular invariance in conformal field theory and S duality in gauge theory. Phys. Rev. D 80, 105015 (2009). arXiv:0908.4409 [hep-th]
[20] Eguchi T., Kanno H.: Geometric transitions, Chern–Simons gauge theory and Veneziano type amplitudes. Phys. Lett. B 585, 163–172 (2004) arXiv:hep-th/0312234 · Zbl 1246.81120 · doi:10.1016/j.physletb.2004.01.085
[21] Iqbal A., Kashani-Poor A.-K.: The vertex on a strip. Adv. Theor. Math. Phys. 10, 317–343 (2006) arXiv:hep-th/0410174 · Zbl 1131.14045
[22] Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122
[23] Aganagic M., Klemm A., Mariño M., Vafa C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005) arXiv:hep-th/0305132 · Zbl 1114.81076 · doi:10.1007/s00220-004-1162-z
[24] Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006) arXiv:hep-th/0312085 · Zbl 1095.81049 · doi:10.1007/s00220-005-1448-9
[25] Ooguri H., Strominger A., Vafa C.: Black hole attractors and the topological string. Phys. Rev. D 70, 106007 (2004) arXiv:hep-th/0405146 · doi:10.1103/PhysRevD.70.106007
[26] Mariño M., Wyllard N.: A note on instanton counting for \({\mathcal{N} = 2}\) gauge theories with classical gauge groups. JHEP 05, 021 (2004) arXiv:hep-th/0404125
[27] Nekrasov N., Shadchin S.: ABCD of instantons. Commun. Math. Phys. 252, 359–391 (2004) arXiv:hep-th/0404225 · Zbl 1108.81038 · doi:10.1007/s00220-004-1189-1
[28] Shadchin S.: Cubic curves from instanton counting. JHEP 03, 046 (2006) arXiv:hep-th/0511132 · Zbl 1226.81273 · doi:10.1088/1126-6708/2006/03/046
[29] Teschner J.: Liouville theory revisited. Class. Quant. Grav. 18, R153–R222 (2001) arXiv:hep-th/0104158 · Zbl 1022.81047 · doi:10.1088/0264-9381/18/23/201
[30] Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Mod. Phys. A 19, 2771–2930 (2004) arXiv:hep-th/0402009 · Zbl 1080.81056 · doi:10.1142/S0217751X04019500
[31] Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[32] Sonoda H.: Sewing conformal field theories. Nucl. Phys. B 311, 401 (1988) · doi:10.1016/0550-3213(88)90066-1
[33] Moore G.W., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[34] Di Francesco P., Mathieu P., Sénéchal D.: Conformal field theory. Springer, Berlin (1997) · Zbl 0869.53052
[35] Barnes E.W.: The theory of the double gamma function. Phil. Trans. Roy. Soc. Lond. A 196, 265–387 (1901) · JFM 32.0442.02 · doi:10.1098/rsta.1901.0006
[36] Fucito F., Morales J.F., Poghossian R.: Instantons on quivers and orientifolds. JHEP 10, 037 (2004) arXiv:hep-th/0408090 · doi:10.1088/1126-6708/2004/10/037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.