×

Refined BPS state counting from Nekrasov’s formula and Macdonald functions. (English) Zbl 1170.81423

Summary: It has been argued that Nekrasov’s partition function gives the generating function of refined BPS state counting in the compactification of \(M\) theory on local Calabi–Yau spaces. We show that a refined version of the topological vertex we previously proposed [the authors, Instanton counting, Macdonald function and the moduli space of \(D\)-branes. J. High Energy Phys. 0505, 039, 26 p., (2005), arXiv:hep-th/0502061] is a building block of Nekrasov’s partition function with two equivariant parameters. Compared with another refined topological vertex by A. Iqbal, C. Kozcaz and C. Vafa [arXiv:hep-th/0701156, 70 p. (2009)], our refined vertex is expressed entirely in terms of the specialization of the Macdonald symmetric functions which is related to the equivariant character of the Hilbert scheme of points on \(\mathbb{C}^2\).
We provide diagrammatic rules for computing the partition function from the web diagrams appearing in geometric engineering of Yang–Mills theory with eight supercharges. Our refined vertex has a simple transformation law under the flop operation of the diagram, which suggests that homological invariants of the Hopf link are related to the Macdonald functions.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
57R57 Applications of global analysis to structures on manifolds

References:

[1] DOI: 10.4310/ATMP.2003.v7.n5.a4 · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[2] DOI: 10.1007/s00220-004-1067-x · Zbl 1055.81055 · doi:10.1007/s00220-004-1067-x
[3] DOI: 10.1007/s00220-004-1162-z · Zbl 1114.81076 · doi:10.1007/s00220-004-1162-z
[4] DOI: 10.1016/S0550-3213(97)00282-4 · Zbl 0935.81058 · doi:10.1016/S0550-3213(97)00282-4
[5] DOI: 10.4310/ATMP.1997.v1.n1.a2 · Zbl 0912.32016 · doi:10.4310/ATMP.1997.v1.n1.a2
[6] DOI: 10.1007/s00222-005-0444-1 · Zbl 1100.14009 · doi:10.1007/s00222-005-0444-1
[7] DOI: 10.4310/ATMP.2003.v7.n3.a4 · Zbl 1044.32022 · doi:10.4310/ATMP.2003.v7.n3.a4
[8] DOI: 10.4310/ATMP.2006.v10.n1.a1 · Zbl 1101.81088 · doi:10.4310/ATMP.2006.v10.n1.a1
[9] Eguchi T., J. High Energy Phys. 0312 pp 006–
[10] DOI: 10.1016/j.physletb.2004.01.085 · Zbl 1246.81120 · doi:10.1016/j.physletb.2004.01.085
[11] Hollowood T., J. High Energy Phys. 0803 pp 069–
[12] Awata H., J. High Energy Phys. 0505 pp 039–
[13] Macdonald I. G., Symmetric Functions and Hall Polynomials (1995) · Zbl 0824.05059
[14] Taki M., J. High Energy Phys. 0803 pp 048–
[15] DOI: 10.4310/ATMP.1999.v3.n5.a6 · Zbl 0985.81081 · doi:10.4310/ATMP.1999.v3.n5.a6
[16] DOI: 10.2977/prims/1166642063 · Zbl 1106.14045 · doi:10.2977/prims/1166642063
[17] DOI: 10.2977/prims/1166642118 · Zbl 1133.14314 · doi:10.2977/prims/1166642118
[18] DOI: 10.1007/BF02102595 · Zbl 0873.17016 · doi:10.1007/BF02102595
[19] DOI: 10.1007/s11005-005-0008-8 · Zbl 1105.57011 · doi:10.1007/s11005-005-0008-8
[20] Tachikawa Y., J. High Energy Phys. 0402 pp 050–
[21] N. Nekrasov and A. Okounkov, The Unity of Mathematics, Progr. Math. 244, eds. P. Etingof, V. Retakh and I. M. Singer (Birkhäuser, 2005) p. 525, arXiv:hep-th/0306238.
[22] DOI: 10.4310/ATMP.2006.v10.n3.a2 · Zbl 1131.14045 · doi:10.4310/ATMP.2006.v10.n3.a2
[23] DOI: 10.1007/BF02100101 · Zbl 0849.05069 · doi:10.1007/BF02100101
[24] DOI: 10.1142/S0129167X08004546 · Zbl 1157.14041 · doi:10.1142/S0129167X08004546
[25] DOI: 10.2307/2118632 · Zbl 0822.33008 · doi:10.2307/2118632
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.