×

Discrete Painlevé system and the double scaling limit of the matrix model for irregular conformal block and gauge theory. (English) Zbl 1406.81061

Summary: We study the partition function of the matrix model of finite size that realizes the irregular conformal block for the case of the \(\mathcal{N} = 2\) supersymmetric \(\mathrm{SU}(2)\) gauge theory with \(N_f = 2\). This model has been obtained in [the author et al., “Massive scaling limit of the \(\beta\)-deformed matrix model of Selberg type”, Phys. Rev. D 82, No. 8, Article ID 085031, 10 p. (2010; doi:10.1103/physrevd.82.085031)] as the massive scaling limit of the \(\beta\)-deformed matrix model representing the conformal block. We point out that the model for the case of \(\beta = 1\) can be recast into a unitary matrix model with log potential and show that it is exhibited as a discrete Painlevé system by the method of orthogonal polynomials. We derive the Painlevé II equation, taking the double scaling limit in the vicinity of the critical point which is the Argyres-Douglas type point of the corresponding spectral curve. By the 0d-4d dictionary, we obtain the time variable and the parameter of the double scaled theory respectively from the sum and the difference of the two mass parameters scaled to their critical values.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Barouch, E.; McCoy, B. M.; Wu, T. T., Phys. Rev. Lett., 31, 1409-1411 (1973)
[2] Tracy, C. A.; McCoy, B. M., Phys. Rev. Lett., 31, 1500-1504 (1973)
[3] Wu, T. T.; McCoy, B. M.; Tracy, C. A.; Barouch, E., Phys. Rev. B, 13, 316-374 (1976)
[4] McCoy, B. M.; Wu, T. T., Phys. Rev. Lett., 45, 675-678 (1980)
[5] McCoy, B. M., (Levi, D.; Winternitz, P., Painlevé Transcendents. Painlevé Transcendents, NATO ASI Series, vol. B278 (1992), Springer), 377-391 · Zbl 0875.35080
[6] Brézin, E.; Kazakov, V. A., Phys. Lett. B, 236, 144-150 (1990); Douglas, M. R.; Shenker, S. H., Nucl. Phys. B, 335, 635-654 (1990); Gross, D. J.; Migdal, A. A., Phys. Rev. Lett., 64, 127-130 (1990)
[7] Alvarez-Gaumé, L., Helv. Phys. Acta, 64, 359-526 (1991)
[8] Dotsenko, V. S.; Fateev, V. A., Nucl. Phys. B, 240, 312-348 (1984)
[9] Dijkgraaf, R.; Vafa, C.
[10] Itoyama, H.; Maruyoshi, K.; Oota, T., Prog. Theor. Phys., 123, 957-987 (2010) · Zbl 1195.81103
[11] Eguchi, T.; Maruyoshi, K., J. High Energy Phys., 1002, Article 022 pp. (2010); Eguchi, T.; Maruyoshi, K., J. High Energy Phys., 1007, Article 081 pp. (2010)
[12] Mironov, A.; Morozov, A.; Shakirov, Sh., Int. J. Mod. Phys. A, 25, 3173-3207 (2010) · Zbl 1193.81091
[13] Itoyama, H.; Oota, T., Nucl. Phys. B, 838, 298-330 (2010) · Zbl 1206.81102
[14] Itoyama, H.; Oota, T.; Yonezawa, N., Phys. Rev. D, 82, Article 085031 pp. (2010)
[15] Gaiotto, D., J. Phys. Conf. Ser., 462, 1, Article 012014 pp. (2013); Gaiotto, D.; Teschner, J., J. High Energy Phys., 1212, Article 050 pp. (2012)
[16] Marshakov, A.; Mironov, A.; Morozov, A., Phys. Lett. B, 682, 125 (2009); Bonelli, G.; Maruyoshi, K.; Tanzini, A., J. High Energy Phys., 1202, Article 031 pp. (2012); Nishinaka, T.; Rim, C., J. High Energy Phys., 1210, Article 138 pp. (2012); Choi, S.-K.; Rim, C., J. High Energy Phys., 1404, Article 106 pp. (2014)
[17] Alday, L. F.; Gaiotto, D.; Tachikawa, Y., Lett. Math. Phys., 91, 167-197 (2010) · Zbl 1185.81111
[18] Nekrasov, N. A., Adv. Theor. Math. Phys., 7, 831-864 (2004) · Zbl 1056.81068
[19] Itoyama, H.; Yoshioka, R., PTEP, 2015, 11, Article 11B103 pp. (2015); Itoyama, H., Butsuri, 71, 9, 607-616 (2016)
[20] Gamayun, O.; Iorgov, N.; Lisovyy, O., J. High Energy Phys., 1210, Article 038 pp. (2012)
[21] Gamayun, O.; Iorgov, N.; Lisovyy, O., J. Phys. A, 46, Article 335203 pp. (2013) · Zbl 1282.34096
[22] Iorgov, N.; Lisovyy, O.; Tykhyy, Y., J. High Energy Phys., 1312, Article 029 pp. (2013)
[23] Nagoya, H., J. Math. Phys., 56, 12, Article 123505 pp. (2015) · Zbl 1328.81195
[24] Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A.
[25] Mironov, A.; Morozov, A., Phys. Lett. B, 773, 34-46 (2017) · Zbl 1378.81046
[26] Grassi, A.; Gu, J.
[27] Demeterfi, K.; Deo, N.; Jain, S.; Tan, C. I., Phys. Rev. D, 42, 4105-4122 (1990)
[28] Douglas, M. R.; Seiberg, N.; Shenker, S. H., Phys. Lett. B, 244, 381-386 (1990)
[29] Crnković, Č.; Moore, G. W., Phys. Lett. B, 257, 322-328 (1991)
[30] Myers, R. C.; Periwal, V., Phys. Rev. Lett., 65, 1088-1091 (1990) · Zbl 1050.82527
[31] Periwal, V.; Shevitz, D., Phys. Rev. Lett., 64, 1326-1329 (1990)
[32] Periwal, V.; Shevitz, D., Nucl. Phys. B, 344, 731-746 (1990)
[33] Bessis, D., Commun. Math. Phys., 69, 147-163 (1979)
[34] Itzykson, C.; Zuber, J. B., J. Math. Phys., 21, 411-421 (1980) · Zbl 0997.81549
[35] Fokas, A. S.; Grammaticos, B.; Ramani, A., J. Math. Anal. Appl., 180, 342-360 (1993) · Zbl 0794.34013
[36] Nijhoff, F.; Satsuma, J.; Kajiwara, K.; Grammaticos, B.; Ramani, A., Inverse Probl., 12, 697-716 (1996) · Zbl 0860.35124
[37] Forrester, P. J.; Witte, N. S., Commun. Pure Appl. Math., 55, 679-727 (2002) · Zbl 1029.34087
[38] Seiberg, N.; Witten, E., Nucl. Phys. B, 431, 484-550 (1994) · Zbl 1020.81911
[39] Hanany, A.; Oz, Y., Nucl. Phys. B, 452, 283-312 (1995) · Zbl 0925.81347
[40] David, F., Mod. Phys. Lett. A, 5, 1019-1030 (1990)
[41] Mironov, A.; Morozov, A., Phys. Lett. B, 252, 47-52 (1990)
[42] Itoyama, H.; Matsuo, Y., Phys. Lett. B, 255, 202-208 (1991)
[43] Argyres, P. C.; Douglas, M. R., Nucl. Phys. B, 448, 93-126 (1995) · Zbl 1009.81572
[44] Argyres, P. C.; Plesser, M. R.; Seiberg, N.; Witten, E., Nucl. Phys. B, 461, 71-84 (1996) · Zbl 1004.81557
[45] Kubota, T.; Yokoi, N., Prog. Theor. Phys., 100, 423-436 (1998)
[46] Malmquist, J., Ark. Mat. Astron. Fys., 17, 1-89 (1922-1923) · JFM 49.0305.02
[47] Okamoto, K., Math. Ann., 275, 221-255 (1986) · Zbl 0589.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.