×

’t Hooft defects and wall crossing in SQM. (English) Zbl 1427.81162

Summary: In this paper we study the contribution of monopole bubbling to the expectation value of supersymmetric ’t Hooft defects in Lagrangian theories of class \(\mathcal{S}\) on \(\mathbb{R}^3 \times S^1\). This can be understood as the Witten index of an SQM living on the world volume of the ’t Hooft defect that couples to the bulk 4D theory. The computation of this Witten index has many subtleties originating from a continuous spectrum of scattering states along the non-compact vacuum branches. We find that even after properly dealing with the spectral asymmetry, the standard localization result for the ’t Hooft defect does not agree with the result obtained from the AGT correspondence. In this paper we will explicitly show that one must correct the localization result by adding an extra term to the standard Jeffrey-Kirwan residue formula. This extra term accounts for the contribution of ground states localized along the non-compact branches. This extra term restores both the expected symmetry properties of the line defect expectation value and reproduces the results derived using the AGT correspondence.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Akhoury, R.; Comtet, A., Anomalous behavior of the Witten index: exactly soluble models, Nucl. Phys., B 246, 253 (1984)
[2] Alday, LF; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167 (2010) · Zbl 1185.81111
[3] Alday, LF; Gaiotto, D.; Gukov, S.; Tachikawa, Y.; Verlinde, H., Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP, 01, 113 (2010) · Zbl 1269.81078
[4] Álvarez-Gaumé, L.; Pietra, SD; Moore, GW, Anomalies and odd dimensions, Annals Phys., 163, 288 (1985) · Zbl 0584.58049
[5] Arkani-Hamed, N.; Cohen, AG; Kaplan, DB; Karch, A.; Motl, L., Deconstructing (2, 0) and little string theories, JHEP, 01, 083 (2003) · Zbl 1225.81109
[6] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys., 104, 465 (2014) · Zbl 1312.58008
[7] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic genera of 2d N = 2 gauge theories, Commun. Math. Phys., 333, 1241 (2015) · Zbl 1321.81059
[8] Benini, F.; Zaffaroni, A., A topologically twisted index for three-dimensional supersymmetric theories, JHEP, 07, 127 (2015) · Zbl 1388.81400
[9] Brennan, TD; Moore, GW, A note on the semiclassical formulation of BPS states in four-dimensional N = 2 theories, PTEP, 2016, 12c110 (2016) · Zbl 1361.81090
[10] Brennan, TD; Dey, A.; Moore, GW, On ’t Hooft defects, monopole bubbling and supersymmetric quantum mechanics, JHEP, 09, 014 (2018) · Zbl 1400.81160
[11] Brennan, TD, Monopole bubbling via string theory, JHEP, 11, 126 (2018) · Zbl 1404.83114
[12] Brennan, TD; Moore, GW; Royston, AB, Wall crossing from Dirac zeromodes, JHEP, 09, 038 (2018) · Zbl 1398.81153
[13] Brennan, TD; Moore, GW, Index-like theorems from line defect vevs, JHEP, 09, 073 (2019) · Zbl 1423.81173
[14] Cherkis, SA; Kapustin, A., Singular monopoles and supersymmetric gauge theories in three-dimensions, Nucl. Phys., B 525, 215 (1998) · Zbl 1031.81643
[15] Diaconescu, D-E, D-branes, monopoles and Nahm equations, Nucl. Phys., B 503, 220 (1997) · Zbl 0938.81034
[16] Dimofte, T.; Gukov, S., Chern-Simons theory and S-duality, JHEP, 05, 109 (2013) · Zbl 1342.81274
[17] Denef, F., Quantum quivers and Hall/hole halos, JHEP, 10, 023 (2002)
[18] Drukker, N.; Morrison, DR; Okuda, T., Loop operators and S-duality from curves on Riemann surfaces, JHEP, 09, 031 (2009)
[19] Drukker, N.; Gomis, J.; Okuda, T.; Teschner, J., Gauge theory loop operators and Liouville theory, JHEP, 02, 057 (2010) · Zbl 1270.81134
[20] Festuccia, G.; Seiberg, N., Rigid supersymmetric theories in curved superspace, JHEP, 06, 114 (2011) · Zbl 1298.81145
[21] Gaiotto, D.; Moore, GW; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 163 (2010) · Zbl 1225.81135
[22] Gaiotto, D., N = 2 dualities, JHEP, 08, 034 (2012) · Zbl 1397.81362
[23] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1358.81150
[24] Gaiotto, D.; Moore, GW; Neitzke, A., Framed BPS states, Adv. Theor. Math. Phys., 17, 241 (2013) · Zbl 1290.81146
[25] D. Gaiotto, G.W. Moore and E. Witten, Algebra of the infrared: string field theoretic structures in massive N = (2, 2) field theory in two dimensions, arXiv:1506.04087 [INSPIRE].
[26] Gomis, J.; Okuda, T.; Pestun, V., Exact results for ’t Hooft loops in gauge theories on S^4, JHEP, 05, 141 (2012) · Zbl 1348.81318
[27] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys., B 492, 152 (1997) · Zbl 0996.58509
[28] Hellerman, S.; Orlando, D.; Reffert, S., String theory of the Ω deformation, JHEP, 01, 148 (2012) · Zbl 1306.81110
[29] Hori, K.; Kim, H.; Yi, P., Witten index and wall crossing, JHEP, 01, 124 (2015) · Zbl 1388.81832
[30] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP07 (2015) 063 [Addendum ibid.04 (2016) 094] [arXiv:1406.6793] [INSPIRE]. · Zbl 1388.81331
[31] Intriligator, KA; Seiberg, N., Mirror symmetry in three-dimensional gauge theories, Phys. Lett., B 387, 513 (1996)
[32] Intriligator, KA; Morrison, DR; Seiberg, N., Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys., B 497, 56 (1997) · Zbl 0934.81061
[33] Y. Ito, T. Okuda and M. Taki, Line operators on S^1× R^3and quantization of the Hitchin moduli space, JHEP04 (2012) 010 [Erratum ibid.03 (2016) 085] [arXiv:1111.4221] [INSPIRE]. · Zbl 1348.81418
[34] L.C. Jeffrey and F.C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, alg-geom/9507012. · Zbl 0949.14021
[35] Kapustin, A., Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev., D 74, 025005 (2006)
[36] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys., 1, 1 (2007) · Zbl 1128.22013
[37] P.B. Kronheimer, Monopoles and Taub-NUT metrics, M.Sc. thesis, Oxford, U.K. (1985).
[38] Kronheimer, PB; Nakajima, H., Yang-Mills instantons on ALE gravitational instantons, Math. Annalen, 288, 263 (1990) · Zbl 0694.53025
[39] Lee, S-J; Yi, P., Witten index for noncompact dynamics, JHEP, 06, 089 (2016) · Zbl 1388.81858
[40] G.W. Moore and N. Seiberg, Lectures on RCFT, RU-89-32, (1989) [YCTP-P13-89] [INSPIRE]. · Zbl 0985.81740
[41] Moore, GW; Nekrasov, N.; Shatashvili, S., Integrating over Higgs branches, Commun. Math. Phys., 209, 97 (2000) · Zbl 0981.53082
[42] Moore, GW; Nekrasov, N.; Shatashvili, S., D particle bound states and generalized instantons, Commun. Math. Phys., 209, 77 (2000) · Zbl 0971.81162
[43] Moore, GW; Royston, AB; Bleeken, D., Parameter counting for singular monopoles on R^3, JHEP, 10, 142 (2014) · Zbl 1336.81059
[44] Moore, GW; Royston, AB; Bleeken, D., Brane bending and monopole moduli, JHEP, 10, 157 (2014) · Zbl 1333.81266
[45] Moore, GW; Royston, AB; Bleeken, D., Semiclassical framed BPS states, JHEP, 07, 071 (2016) · Zbl 1390.81170
[46] H. Nakajima and Y. Takayama, Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A, arXiv:1606.02002 [INSPIRE]. · Zbl 1431.16014
[47] Nekrasov, NA, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831 (2003) · Zbl 1056.81068
[48] Nekrasov, N.; Rosly, A.; Shatashvili, S., Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl., 216, 69 (2011) · Zbl 1308.81133
[49] Nekrasov, N.; Shadchin, S., ABCD of instantons, Commun. Math. Phys., 252, 359 (2004) · Zbl 1108.81038
[50] Niemi, AJ; Semenoff, GW, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett., 51, 2077 (1983)
[51] Pestun, V., Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys., 313, 71 (2012) · Zbl 1257.81056
[52] Redlich, AN, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett., 52, 18 (1984)
[53] Redlich, AN, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev., D 29, 2366 (1984)
[54] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[55] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys., B 431, 484 (1994) · Zbl 1020.81911
[56] Seiberg, N.; Witten, E., Comments on string dynamics in six-dimensions, Nucl. Phys., B 471, 121 (1996) · Zbl 1003.81535
[57] Sethi, S.; Stern, M., A comment on the spectrum of H monopoles, Phys. Lett., B 398, 47 (1997)
[58] Sethi, S.; Stern, M., D-brane bound states redux, Commun. Math. Phys., 194, 675 (1998) · Zbl 0911.53052
[59] G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys.B 138 (1978) 1 [INSPIRE].
[60] Tong, D., The holographic dual of AdS_3× S^3× S^3× S^1, JHEP, 04, 193 (2014)
[61] Verlinde, EP, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, 300, 360 (1988) · Zbl 1180.81120
[62] Witten, E., Branes, instantons, and Taub-NUT spaces, JHEP, 06, 067 (2009)
[63] Yi, P., Witten index and threshold bound states of D-branes, Nucl. Phys., B 505, 307 (1997) · Zbl 0925.58105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.