×

Deformed \( \mathcal{N}=2 \) theories, generalized recursion relations and S-duality. (English) Zbl 1342.81327

Summary: We study the non-perturbative properties of \(N = 2\) super conformal field theories in four dimensions using localization techniques. In particular we consider \(\mathrm{SU}(2)\) gauge theories, deformed by a generic \(\epsilon\)-background, with four fundamental flavors or with one adjoint hypermultiplet. In both cases we explicitly compute the first few instanton corrections to the partition function and the prepotential using Nekrasov’s approach. These results allow us to reconstruct exact expressions involving quasi-modular functions of the bare gauge coupling constant and to show that the prepotential terms satisfy a modular anomaly equation that takes the form of a recursion relation with an explicitly \(\epsilon\)-dependent term. We then investigate the implications of this recursion relation on the modular properties of the effective theory and find that with a suitable redefinition of the prepotential and of the effective coupling it is possible, at least up to the third order in the deformation parameters, to cast the S-duality relations in the same form as they appear in the Seiberg-Witten solution of the undeformed theory.

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[2] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [INSPIRE]. · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[3] E. D’Hoker and D. Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, hep-th/9912271 [INSPIRE].
[4] J. Minahan, D. Nemeschansky and N. Warner, Instanton expansions for mass deformed N = 4 super Yang-Mills theories, Nucl. Phys.B 528 (1998) 109 [hep-th/9710146] [INSPIRE]. · Zbl 0951.81080 · doi:10.1016/S0550-3213(98)00314-9
[5] M. Billó, M. Frau, L. Gallot and A. Lerda, The exact 8d chiral ring from 4d recursion relations, JHEP11 (2011) 077 [arXiv:1107.3691] [INSPIRE]. · Zbl 1306.81198 · doi:10.1007/JHEP11(2011)077
[6] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [INSPIRE]. · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[7] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE]. · Zbl 1233.14029
[8] A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE]. · Zbl 1071.81577
[9] G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys.209 (2000) 77 [hep-th/9803265] [INSPIRE]. · Zbl 0971.81162 · doi:10.1007/s002200050016
[10] R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys.A 18 (2003) 2541 [hep-th/0208176] [INSPIRE]. · Zbl 1069.81569
[11] U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP05 (2003) 054 [hep-th/0211108] [INSPIRE]. · doi:10.1088/1126-6708/2003/05/054
[12] R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of gravitational couplings, JHEP04 (2004) 008 [hep-th/0403057] [INSPIRE]. · doi:10.1088/1126-6708/2004/04/008
[13] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys.252 (2004) 359 [hep-th/0404225] [INSPIRE]. · Zbl 1108.81038 · doi:10.1007/s00220-004-1189-1
[14] M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP05 (2004) 021 [hep-th/0404125] [INSPIRE]. · doi:10.1088/1126-6708/2004/05/021
[15] M. Billó et al., Exotic instanton counting and heterotic/type-I-prime duality, JHEP07 (2009) 092 [arXiv:0905.4586] [INSPIRE]. · doi:10.1088/1126-6708/2009/07/092
[16] F. Fucito, J.F. Morales and R. Poghossian, Exotic prepotentials from D(−1)D7 dynamics, JHEP10 (2009) 041 [arXiv:0906.3802] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/041
[17] M. Billó et al., Stringy instanton corrections to N = 2 gauge couplings, JHEP05 (2010) 107 [arXiv:1002.4322] [INSPIRE]. · Zbl 1287.81089 · doi:10.1007/JHEP05(2010)107
[18] H. Nakajima and K. Yoshioka, Lectures on instanton counting, math.AG/0311058 [INSPIRE]. · Zbl 1080.14016
[19] M. Billó, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the topological string, JHEP11 (2006) 012 [hep-th/0606013] [INSPIRE]. · doi:10.1088/1126-6708/2006/11/012
[20] K. Ito, H. Nakajima, T. Saka and S. Sasaki, N = 2 instanton effective action in Ω-background and D3/D(−1)-brane system in RR background, JHEP11 (2010) 093 [arXiv:1009.1212] [INSPIRE]. · Zbl 1294.81115 · doi:10.1007/JHEP11(2010)093
[21] I. Antoniadis, E. Gava, K. Narain and T. Taylor, Topological amplitudes in string theory, Nucl. Phys.B 413 (1994) 162 [hep-th/9307158] [INSPIRE]. · Zbl 1007.81522 · doi:10.1016/0550-3213(94)90617-3
[22] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys.B 405 (1993) 279 [hep-th/9302103] [INSPIRE]. · Zbl 0908.58074 · doi:10.1016/0550-3213(93)90548-4
[23] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys.165 (1994) 311 [hep-th/9309140] [INSPIRE]. · Zbl 0815.53082 · doi:10.1007/BF02099774
[24] A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP03 (2003) 051 [hep-th/0211216] [INSPIRE]. · doi:10.1088/1126-6708/2003/03/051
[25] M.-X. Huang and A. Klemm, Holomorphicity and modularity in Seiberg-Witten theories with matter, JHEP07 (2010) 083 [arXiv:0902.1325] [INSPIRE]. · Zbl 1290.81071 · doi:10.1007/JHEP07(2010)083
[26] I. Antoniadis, S. Hohenegger, K. Narain and T. Taylor, Deformed topological partition function and Nekrasov backgrounds, Nucl. Phys.B 838 (2010) 253 [arXiv:1003.2832] [INSPIRE]. · Zbl 1206.81093 · doi:10.1016/j.nuclphysb.2010.04.021
[27] D. Krefl and J. Walcher, Extended holomorphic anomaly in gauge theory, Lett. Math. Phys.95 (2011) 67 [arXiv:1007.0263] [INSPIRE]. · Zbl 1205.81118 · doi:10.1007/s11005-010-0432-2
[28] M.-X. Huang and A. Klemm, Direct integration for general Ω backgrounds, Adv. Theor. Math. Phys.16 (2012), no. 3 805-849 [arXiv:1009.1126] [INSPIRE]. · Zbl 1276.81098 · doi:10.4310/ATMP.2012.v16.n3.a2
[29] N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE]. · Zbl 1214.83049
[30] R. Poghossian, Deforming SW curve, JHEP04 (2011) 033 [arXiv:1006.4822] [INSPIRE]. · Zbl 1250.81111 · doi:10.1007/JHEP04(2011)033
[31] F. Fucito, J. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP05 (2011) 098 [arXiv:1103.4495] [INSPIRE]. · Zbl 1296.81060 · doi:10.1007/JHEP05(2011)098
[32] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[33] D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE]. · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[34] A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP02 (2010) 030 [arXiv:0911.5721] [INSPIRE]. · Zbl 1270.81139 · doi:10.1007/JHEP02(2010)030
[35] M.-X. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid N = 2 theories, Annales Henri Poincaré14 (2013) 425 [arXiv:1109.5728] [INSPIRE]. · Zbl 1272.81119 · doi:10.1007/s00023-012-0192-x
[36] M.-X. Huang, On gauge theory and topological string in Nekrasov-Shatashvili limit, JHEP06 (2012) 152 [arXiv:1205.3652] [INSPIRE]. · Zbl 1397.81151 · doi:10.1007/JHEP06(2012)152
[37] A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP03 (2013) 133 [arXiv:1212.0722] [INSPIRE]. · Zbl 1342.81441 · doi:10.1007/JHEP03(2013)133
[38] D. Galakhov, A. Mironov and A. Morozov, S-duality as a beta-deformed Fourier transform, JHEP08 (2012) 067 [arXiv:1205.4998] [INSPIRE]. · Zbl 1397.81365 · doi:10.1007/JHEP08(2012)067
[39] M. Billó et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP08 (2012) 166 [arXiv:1206.3914] [INSPIRE]. · Zbl 1397.81134 · doi:10.1007/JHEP08(2012)166
[40] T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S4, JHEP03 (2012) 017 [arXiv:1004.1222] [INSPIRE]. · Zbl 1309.81168 · doi:10.1007/JHEP03(2012)017
[41] F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys.B 703 (2004) 518 [hep-th/0406243] [INSPIRE]. · Zbl 1198.53024 · doi:10.1016/j.nuclphysb.2004.09.014
[42] J. Minahan, D. Nemeschansky and N. Warner, Partition functions for BPS states of the noncritical E8string, Adv. Theor. Math. Phys.1 (1998) 167 [hep-th/9707149] [INSPIRE]. · Zbl 0898.32013
[43] T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct integration of the topological string, JHEP08 (2007) 058 [hep-th/0702187] [INSPIRE]. · Zbl 1326.81191 · doi:10.1088/1126-6708/2007/08/058
[44] M. Billó, L. Gallot, A. Lerda and I. Pesando, F-theoretic versus microscopic description of a conformal N = 2 SYM theory, JHEP11 (2010) 041 [arXiv:1008.5240] [INSPIRE]. · Zbl 1294.81088 · doi:10.1007/JHEP11(2010)041
[45] T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, arXiv:1106.4550 [INSPIRE]. · Zbl 1342.81274
[46] E. Witten, Quantum background independence in string theory, hep-th/9306122 [INSPIRE].
[47] M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, work in progress.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.