×

Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated. (English) Zbl 1380.81381

Summary: Coulomb branch chiral rings of \(\mathcal{N}=2 \) SCFTs are conjectured to be freely generated. While no counter-example is known, no direct evidence for the conjecture is known either. We initiate a systematic study of SCFTs with Coulomb branch chiral rings satisfying non-trivial relations, restricting our analysis to rank 1. The main result of our study is that (rank-1) SCFTs with non-freely generated CB chiral rings when deformed by relevant deformations, always flow to theories with non-freely generated CB rings. This implies that if they exist, they must thus form a distinct subset under RG flows. We also find many interesting characteristic properties that these putative theories satisfy which may behelpful in proving or disproving their existence using other methods.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81510
[2] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [INSPIRE]. · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[3] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs I: physical constraints on relevant deformations, arXiv:1505.04814 [INSPIRE]. · Zbl 1387.81301
[4] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs II: construction of special Kähler geometries and RG flows, arXiv:1601.00011 [INSPIRE]. · Zbl 1387.81300
[5] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape \[ofN=2 \mathcal{N}=2\] rank 1 SCFTs, JHEP05 (2016) 088 [arXiv:1602.02764] [INSPIRE]. · Zbl 1388.81758 · doi:10.1007/JHEP05(2016)088
[6] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs III: enhanced Coulomb branches and central charges, arXiv:1609.04404 [INSPIRE]. · Zbl 1387.81302
[7] P.C. Argyres and M. Martone, \[4dN=2 \mathcal{N}=2\] theories with disconnected gauge groups, JHEP03 (2017) 145 [arXiv:1611.08602] [INSPIRE]. · Zbl 1377.81149 · doi:10.1007/JHEP03(2017)145
[8] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, \[TheN=2 \mathcal{N}=2\] superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482 · doi:10.1007/JHEP03(2016)183
[9] Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys.890 (2014) 1 [arXiv:1312.2684].
[10] H. Zoladek, The monodromy book, Birkhauser, Germany (2006). · Zbl 1103.32015
[11] W. Ebeling, Functions of several complex variables and their singularities, Graduate studies in mathematics volume 83, Americaln Mathematical Society, U.S.A. (2007). · Zbl 1188.32001
[12] L.C. Greuel, G.M. and E. Shustin, Introduction to singularities and deformations, Springer, Germany (2007). · Zbl 1125.32013
[13] V.I. Arnold and A. Varchenko, Singularities of differentiable maps, volume 1, Birkhauser, Germany (1985). · Zbl 0554.58001 · doi:10.1007/978-1-4612-5154-5
[14] V.I. Arnold and A. Varchenko, Singularities of differentiable maps, volume 2, Birkhauser, Germany (1988). · Zbl 0659.58002 · doi:10.1007/978-1-4612-3940-6
[15] D. Xie and S.-T. Yau, 4D N = 2 SCFT and singularity theory Part I: Classification, arXiv:1510.01324 [INSPIRE].
[16] B. Chen, D. Xie, S.-T. Yau, S.S.T. Yau and H. Zuo, \[4DN=2 \mathcal{N}=2\] SCFT and singularity theory. Part II: complete intersection, Adv. Theor. Math. Phys.21 (2017) 121 [arXiv:1604.07843] [INSPIRE]. · Zbl 1366.81256
[17] Y. Wang, D. Xie, S.S.T. Yau and S.-T. Yau, 4d N = 2 SCFT from complete intersection singularity, arXiv:1606.06306 [INSPIRE]. · Zbl 1384.81139
[18] K. Kodaira, On the structure of compact complex analytic surfaces. I, Am. J. Math.86 (1964) 751. · Zbl 0137.17501 · doi:10.2307/2373157
[19] K. Kodaira, On the structure of compact complex analytic surfaces. II, III, Am. J. Math.88 (1966) 682. · Zbl 0193.37701 · doi:10.2307/2373150
[20] F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys.307 (2003) 41 [hep-th/0209056] [INSPIRE]. · Zbl 1035.81056 · doi:10.1016/S0003-4916(03)00074-5
[21] G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys.55 (1977) 1 [INSPIRE]. · Zbl 0352.22012 · doi:10.1007/BF01613145
[22] O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Z3-twisted D4 theory, arXiv:1601.02077 [INSPIRE]. · Zbl 1388.81504
[23] O. Chacaltana, J. Distler, A. Trimm and Y. Zhu, Tinkertoys for the E7theory, to appear. · Zbl 1391.83104
[24] D. Akhiezer, Lie group actions in complex analysis, Vieweg (1995). · Zbl 0845.22001
[25] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[26] C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. · Zbl 1388.81766 · doi:10.1007/JHEP05(2015)020
[27] M. Lemos and P. Liendo, \[BootstrappingN=2 \mathcal{N}=2\] chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE]. · Zbl 1388.81056 · doi:10.1007/JHEP01(2016)025
[28] R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys.B 460 (1996) 299 [hep-th/9510101] [INSPIRE]. · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[29] R. Donagi and E. Markman, Cubics, integrable systems, and Calabi-Yau threefolds, alg-geom/9408004. · Zbl 0878.14031
[30] J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6global symmetry, Nucl. Phys.B 482 (1996) 142 [hep-th/9608047] [INSPIRE]. · Zbl 0925.81309 · doi:10.1016/S0550-3213(96)00552-4
[31] J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys.B 489 (1997) 24 [hep-th/9610076] [INSPIRE]. · Zbl 0925.81382 · doi:10.1016/S0550-3213(97)00039-4
[32] P.C. Argyres and J. Wittig, Mass deformations of four-dimensional, rank 1, N = 2 superconformal field theories, J. Phys. Conf. Ser.462 (2013) 012001 [arXiv:1007.5026] [INSPIRE]. · doi:10.1088/1742-6596/462/1/012001
[33] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/014
[34] D.S. Freed, Special Kähler manifolds, Commun. Math. Phys.203 (1999) 31 [hep-th/9712042] [INSPIRE]. · Zbl 0940.53040 · doi:10.1007/s002200050604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.