×

Little string origin of surface defects. (English) Zbl 1380.83256

Summary: We derive a large class of codimension-two defects of 4d \(\mathcal{N}=4 \) Super Yang-Mills (SYM) theory from the (2, 0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to S. Gukov and E. Witten, “Gauge theory, ramification, and the geometric Langlands program” in [arXiv:hep-th/0612073]. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2, 0) CFT limit.

MSC:

83E30 String and superstring theories in gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
83C75 Space-time singularities, cosmic censorship, etc.
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Software:

Mathematica

References:

[1] S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE]. · Zbl 1237.14024
[2] D. Gaiotto, \[N=2 \mathcal{N}=2\] dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE]. · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[3] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1358.81150
[4] E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE]. · Zbl 1216.81129
[5] O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories, Int. J. Mod. Phys.A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE]. · Zbl 1259.81030 · doi:10.1142/S0217751X1340006X
[6] A.K. Balasubramanian, Four \[dimensionalN=2 \mathcal{N}=2\] theories from six dimensions, Ph.D. Thesis, Texas University, U.S.A. (2014). · Zbl 0996.58509
[7] M. Aganagic and N. Haouzi, ADE Little String Theory on a Riemann Surface (and Triality), arXiv:1506.04183 [INSPIRE]. · Zbl 0940.81500
[8] C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys.1 (1998) 158 [hep-th/9707131] [INSPIRE]. · Zbl 0889.53054 · doi:10.4310/ATMP.1997.v1.n1.a6
[9] T.A. Springer, The unipotent variety of a semi-simple group, in Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pp. 373-391, Oxford University Press, London, (1969). · Zbl 0195.50803
[10] R. Steinberg, On the desingularization of the unipotent variety, Invent. Math.36 (1976) 209. · Zbl 0352.20035 · doi:10.1007/BF01390010
[11] B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math.151 (2003) 167. · Zbl 1072.14058 · doi:10.1007/s00222-002-0260-9
[12] O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP04 (2015) 141 [arXiv:1410.2806] [INSPIRE]. · Zbl 1388.81706 · doi:10.1007/JHEP04(2015)141
[13] H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed TNas a linear quiver, JHEP02 (2015) 089 [arXiv:1410.6868] [INSPIRE]. · Zbl 1387.81354 · doi:10.1007/JHEP02(2015)089
[14] Y. Tachikawa, Six-dimensional D(N) theory and four-dimensional SO-USp quivers, JHEP07 (2009) 067 [arXiv:0905.4074] [INSPIRE]. · doi:10.1088/1126-6708/2009/07/067
[15] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[16] S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N=2 gauge theories and degenerate fields of Toda theory, Phys. Rev.D 81 (2010) 046004 [arXiv:0911.4787] [INSPIRE].
[17] N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc.55 (1987) 59 [INSPIRE]. · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[18] N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T5and T5/ℤ2, Phys. Lett.B 408 (1997) 98 [hep-th/9705221] [INSPIRE]. · doi:10.1016/S0370-2693(97)00805-8
[19] E. Witten, Some comments on string dynamics, in the proceedings of Future perspectives in string theory, Strings’95, Los Angeles, U.S.A., March 13-18, 1995, hep-th/9507121 [INSPIRE].
[20] A. Losev, G.W. Moore and S.L. Shatashvili, M & m’s, Nucl. Phys.B 522 (1998) 105 [hep-th/9707250] [INSPIRE]. · Zbl 1047.81550 · doi:10.1016/S0550-3213(98)00262-4
[21] O. Aharony, A brief review of ‘little string theories’, Class. Quant. Grav.17 (2000) 929 [hep-th/9911147] [INSPIRE]. · Zbl 0952.81040 · doi:10.1088/0264-9381/17/5/302
[22] M. Reid, McKay correspondence, alg-geom/9702016 [INSPIRE]. · Zbl 0352.20035
[23] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
[24] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE]. · Zbl 1206.81082 · doi:10.4310/ATMP.2009.v13.n3.a5
[25] A. Hanany and N. Mekareeya, Complete Intersection Moduli Spaces in N = 4 Gauge Theories in Three Dimensions, JHEP01 (2012) 079 [arXiv:1110.6203] [INSPIRE]. · Zbl 1306.81108 · doi:10.1007/JHEP01(2012)079
[26] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Tρσ(G) theories and their Hilbert series, JHEP01 (2015) 150 [arXiv:1410.1548] [INSPIRE]. · Zbl 1388.81306 · doi:10.1007/JHEP01(2015)150
[27] A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits, JHEP06 (2016) 130 [arXiv:1601.04020] [INSPIRE]. · Zbl 1390.81741 · doi:10.1007/JHEP06(2016)130
[28] A. Malcev, On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra, C.R. (Doklady) Acad. Sci. URSS (N.S.)36 (1942) 42. · Zbl 0889.53054
[29] F. Cachazo, S. Katz and C. Vafa, Geometric transitions and N = 1 quiver theories, hep-th/0108120 [INSPIRE]. · Zbl 1342.81566
[30] N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories, arXiv:1211.2240 [INSPIRE].
[31] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories, arXiv:1312.6689 [INSPIRE]. · Zbl 1393.81033
[32] D. Nanopoulos and D. Xie, Hitchin Equation, Singularity and N = 2 Superconformal Field Theories, JHEP03 (2010) 043 [arXiv:0911.1990] [INSPIRE]. · Zbl 1271.81114 · doi:10.1007/JHEP03(2010)043
[33] D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, (1993). · Zbl 0972.17008
[34] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, vol. 946 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, (1982). · Zbl 0486.20025
[35] P. Bala and R.W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc.79 (1976) 401. · Zbl 0364.22006
[36] P. Bala and R.W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cambridge Philos. Soc.80 (1976) 1. · Zbl 0364.22007
[37] N. Haouzi and C. Schmid, Little String Defects and Bala-Carter Theory, arXiv:1612.02008 [INSPIRE]. · Zbl 1380.83256
[38] O. Chacaltana and J. Distler, Tinkertoys for the DNseries, JHEP02 (2013) 110 [arXiv:1106.5410] [INSPIRE]. · Zbl 1342.81566 · doi:10.1007/JHEP02(2013)110
[39] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP11 (2010) 099 [arXiv:1008.5203] [INSPIRE]. · Zbl 1294.81177 · doi:10.1007/JHEP11(2010)099
[40] O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the E6theory, JHEP09 (2015) 007 [arXiv:1403.4604] [INSPIRE]. · Zbl 1388.81645 · doi:10.1007/JHEP09(2015)007
[41] E. Frenkel and N. Reshetikhin, Deformations ofW \[\mathcal{W} \]-algebras associated to simple Lie algebras, Comm. Math. Phys.197 (1998) 1 [q-alg/9708006]. · Zbl 0939.17011
[42] T. Kimura and V. Pestun, Quiver W-algebras, arXiv:1512.08533 [INSPIRE]. · Zbl 1402.81245
[43] N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, JHEP06 (2011) 025 [arXiv:1003.1112] [INSPIRE]. · Zbl 1298.81170 · doi:10.1007/JHEP06(2011)025
[44] P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept.223 (1993) 183 [hep-th/9210010] [INSPIRE]. · doi:10.1016/0370-1573(93)90111-P
[45] P. Bouwknegt and K. Pilch, On deformed W algebras and quantum affine algebras, Adv. Theor. Math. Phys.2 (1998) 357 [math/9801112] [INSPIRE]. · Zbl 0916.17010
[46] C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of Instantons and W-algebras, JHEP03 (2012) 045 [arXiv:1111.5624] [INSPIRE]. · Zbl 1309.81165 · doi:10.1007/JHEP03(2012)045
[47] K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys.C 2 (1991) 787 [INSPIRE]. · Zbl 0940.81500 · doi:10.1142/S0129183191001001
[48] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys.B 492 (1997) 152 [hep-th/9611230] [INSPIRE]. · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[49] S. Gukov and E. Witten, Rigid Surface Operators, Adv. Theor. Math. Phys.14 (2010) 87 [arXiv:0804.1561] [INSPIRE]. · Zbl 1203.81114 · doi:10.4310/ATMP.2010.v14.n1.a3
[50] M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville Triality, arXiv:1309.1687 [INSPIRE]. · Zbl 1387.81354
[51] M. Aganagic, N. Haouzi and S. Shakirov, An-Triality, arXiv:1403.3657 [INSPIRE]. · Zbl 0996.58509
[52] A. Hanany and M. Sperling, Coulomb branches for rank 2 gauge groups in \[3dN=4 \mathcal{N}=4\] gauge theories, JHEP08 (2016) 016 [arXiv:1605.00010] [INSPIRE]. · Zbl 1390.81213 · doi:10.1007/JHEP08(2016)016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.