×

Synthetic gravitational waves from a rolling axion monodromy. (English) Zbl 1485.83016

Summary: In string theory inspired models of axion-like fields, sub-leading non-perturbative effects, if sufficiently large, can introduce steep cliffs and gentle plateaus onto the underlying scalar potential. During inflation, the motion of a spectator axion \(\sigma\) on this potential becomes temporarily fast, leading to localized amplification of one helicity state of gauge fields. In this model, the tensor and scalar correlators sourced by the vector fields exhibit localized peak(s) in momentum space corresponding to the modes that exit the horizon while the roll of \(\sigma\) is fast. Thanks to the gravitational coupling of gauge fields with the visible sector and the localized nature of particle production, this model can generate observable gravitational waves (GWs) at CMB scales while satisfying the current limits on scalar perturbations. The resulting GW signal breaks parity and exhibit sizeable non-Gaussianity that can be probed by future CMB B-mode missions. Depending on the initial conditions and model parameters, the roll of the spectator axion can also generate an observably large GW signature at interferometer scales while respecting the bounds on the scalar fluctuations from primordial black hole limits. In our analysis, we carefully investigate bounds on the model parameters that arise through back-reaction and perturbativity considerations to show that these limits are satisfied by the implementations of the model that generate GW signals at CMB and sub-CMB scales.

MSC:

83C35 Gravitational waves
83E30 String and superstring theories in gravitational theory
81V25 Other elementary particle theory in quantum theory
83E05 Geometrodynamics and the holographic principle
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
58J47 Propagation of singularities; initial value problems on manifolds
83C57 Black holes
35B20 Perturbations in context of PDEs

References:

[1] Guth, Alan H.; Fang, Li-Zhi; Ruffini, R., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23, 347-356 (1981) · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[2] Linde, Andrei D.; Fang, Li-Zhi; Ruffini, R., A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B, 108, 389-393 (1982) · doi:10.1016/0370-2693(82)91219-9
[3] Linde, Andrei D., Particle physics and inflationary cosmology (1990)
[4] Planck Collaboration; Ade, P. A. R., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., 571, A24 (2014) · doi:10.1051/0004-6361/201321554
[5] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[6] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[7] BICEP2, Keck Array Collaboration; Ade, P. A. R., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.031302
[8] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[9] Kogut, A., The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/025
[10] Hazumi, M., LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection, J. Low Temp. Phys., 194, 443-452 (2019) · doi:10.1007/s10909-019-02150-5
[11] CMB-S4 Collaboration; Abazajian, Kevork N., CMB-S4 Science Book, First Edition (2016)
[12] Kamionkowski, Marc; Kovetz, Ely D., The Quest for B Modes from Inflationary Gravitational Waves, Ann. Rev. Astron. Astrophys., 54, 227-269 (2016) · doi:10.1146/annurev-astro-081915-023433
[13] Cook, Jessica L.; Sorbo, Lorenzo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.023534
[14] Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias, New Sources of Gravitational Waves during Inflation, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/016
[15] Garcia, Marcos A. G.; Amin, Mustafa A.; Carlsten, Scott G.; Green, Daniel, Stochastic Particle Production in a de Sitter Background, JCAP, 05 (2019) · Zbl 1481.83105 · doi:10.1088/1475-7516/2019/05/012
[16] Garcia, Marcos A. G.; Amin, Mustafa A.; Green, Daniel, Curvature Perturbations From Stochastic Particle Production During Inflation, JCAP, 06 (2020) · Zbl 1492.83094 · doi:10.1088/1475-7516/2020/06/039
[17] Barnaby, Neil; Peloso, Marco, Large Nongaussianity in Axion Inflation, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.181301
[18] Barnaby, Neil; Moxon, Jordan; Namba, Ryo; Peloso, Marco; Shiu, Gary; Zhou, Peng, Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.103508
[19] Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias, Gravitational Waves and the Scale of Inflation, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.063518
[20] Dimastrogiovanni, Emanuela; Peloso, Marco, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.103501
[21] Adshead, Peter; Martinec, Emil; Wyman, Mark, Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound, Phys. Rev. D, 88 (2013) · Zbl 1342.83510 · doi:10.1103/PhysRevD.88.021302
[22] Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco, Gauge-flation confronted with Planck, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/045
[23] Obata, Ippei; Miura, Takashi; Soda, Jiro, Chromo-Natural Inflation in the Axiverse, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.063516
[24] Obata, Ippei; Soda, Jiro, Chiral primordial Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.123502
[25] Maleknejad, Azadeh, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP, 07, 104 (2016) · Zbl 1390.83050 · doi:10.1007/JHEP07(2016)104
[26] Adshead, Peter; Sfakianakis, Evangelos I., Higgsed Gauge-flation, JHEP, 08, 130 (2017) · Zbl 1381.85007 · doi:10.1007/JHEP08(2017)130
[27] Biagetti, Matteo; Fasiello, Matteo; Riotto, Antonio, Enhancing Inflationary Tensor Modes through Spectator Fields, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.103518
[28] Biagetti, Matteo; Dimastrogiovanni, Emanuela; Fasiello, Matteo; Peloso, Marco, Gravitational Waves and Scalar Perturbations from Spectator Fields, JCAP, 04 (2015) · doi:10.1088/1475-7516/2015/04/011
[29] Fujita, Tomohiro; Yokoyama, Jun’ichi; Yokoyama, Shuichiro, Can a spectator scalar field enhance inflationary tensor mode?, PTEP, 2015 (2015) · doi:10.1093/ptep/ptv037
[30] Cannone, Dario; Tasinato, Gianmassimo; Wands, David, Generalised tensor fluctuations and inflation, JCAP, 01 (2015) · doi:10.1088/1475-7516/2015/01/029
[31] Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo, Breaking discrete symmetries in the effective field theory of inflation, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/003
[32] Cai, Yong; Wang, Yu-Tong; Piao, Yun-Song, Oscillating modulation to B-mode polarization from varying propagating speed of primordial gravitational waves, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.103001
[33] Cai, Yong; Wang, Yu-Tong; Piao, Yun-Song, Propagating speed of primordial gravitational waves and inflation, Phys. Rev. D, 94 (2016) · Zbl 1388.83076 · doi:10.1103/PhysRevD.94.043002
[34] Bartolo, Nicola; Cannone, Dario; Ricciardone, Angelo; Tasinato, Gianmassimo, Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation, JCAP, 03 (2016) · doi:10.1088/1475-7516/2016/03/044
[35] Mylova, Maria; Özsoy, Ogan; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne, A new mechanism to enhance primordial tensor fluctuations in single field inflation, JCAP, 12 (2018) · Zbl 1536.83195 · doi:10.1088/1475-7516/2018/12/024
[36] Ozsoy, Ogan; Mylova, Maria; Parameswaran, Susha; Powell, Cari; Tasinato, Gianmassimo; Zavala, Ivonne, Squeezed tensor non-Gaussianity in non-attractor inflation, JCAP, 09 (2019) · Zbl 1536.83195 · doi:10.1088/1475-7516/2019/09/036
[37] Choi, Kiwoon; Choi, Ki-Young; Kim, Hyungjin; Shin, Chang Sub, Primordial perturbations from dilaton-induced gauge fields, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/046
[38] Fujita, Tomohiro; Obata, Ippei; Tanaka, Takahiro; Yokoyama, Shuichiro, Statistically Anisotropic Tensor Modes from Inflation, JCAP, 07 (2018) · Zbl 1527.83133 · doi:10.1088/1475-7516/2018/07/023
[39] Kawasaki, Masahiro; Nakatsuka, Hiromasa; Obata, Ippei, Generation of Primordial Black Holes and Gravitational Waves from Dilaton-Gauge Field Dynamics, JCAP, 05 (2020) · Zbl 1491.83011 · doi:10.1088/1475-7516/2020/05/007
[40] Ratra, Bharat, Cosmological “seed” magnetic field from inflation, Astrophys. J. Lett., 391, L1-L4 (1992) · doi:10.1086/186384
[41] Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V., Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett., 65, 3233-3236 (1990) · doi:10.1103/PhysRevLett.65.3233
[42] Adshead, Peter; Sfakianakis, Evangelos I., Fermion production during and after axion inflation, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/021
[43] Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo, Phenomenology of fermion production during axion inflation, JCAP, 06 (2018) · Zbl 1527.83100 · doi:10.1088/1475-7516/2018/06/020
[44] Domcke, Valerie; Mukaida, Kyohei, Gauge Field and Fermion Production during Axion Inflation, JCAP, 11 (2018) · Zbl 1527.83122 · doi:10.1088/1475-7516/2018/11/020
[45] Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo, Gravitational waves from fermion production during axion inflation, JCAP, 10 (2019) · Zbl 1527.83100 · doi:10.1088/1475-7516/2019/10/018
[46] Anber, Mohamed M.; Sorbo, Lorenzo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.043534
[47] Prokopec, Tomislav, Cosmological magnetic fields from photon coupling to fermions and bosons in inflation (2001)
[48] Anber, Mohamed M.; Sorbo, Lorenzo, N-flationary magnetic fields, JCAP, 10 (2006) · doi:10.1088/1475-7516/2006/10/018
[49] Caprini, Chiara; Sorbo, Lorenzo, Adding helicity to inflationary magnetogenesis, JCAP, 10 (2014) · Zbl 1391.85003 · doi:10.1088/1475-7516/2014/10/056
[50] Fujita, Tomohiro; Namba, Ryo; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki, Consistent generation of magnetic fields in axion inflation models, JCAP, 05 (2015) · doi:10.1088/1475-7516/2015/05/054
[51] Adshead, Peter; Giblin, John T.; Scully, Timothy R.; Sfakianakis, Evangelos I., Magnetogenesis from axion inflation, JCAP, 10 (2016) · doi:10.1088/1475-7516/2016/10/039
[52] Barnaby, Neil; Namba, Ryo; Peloso, Marco, Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity, JCAP, 04 (2011) · doi:10.1088/1475-7516/2011/04/009
[53] Cook, Jessica L.; Sorbo, Lorenzo, An inflationary model with small scalar and large tensor nongaussianities, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/047
[54] Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro, Tensor Non-Gaussianity from Axion-Gauge-Fields Dynamics: Parameter Search, JCAP, 06 (2018) · Zbl 1527.83101 · doi:10.1088/1475-7516/2018/06/027
[55] Fujita, Tomohiro; Namba, Ryo; Obata, Ippei, Mixed Non-Gaussianity from Axion-Gauge Field Dynamics, JCAP, 04 (2019) · Zbl 1542.83054 · doi:10.1088/1475-7516/2019/04/044
[56] Dimastrogiovanni, Emanuela; Fasiello, Matteo; Hardwick, Robert J.; Assadullahi, Hooshyar; Koyama, Kazuya; Wands, David, Non-Gaussianity from Axion-Gauge Fields Interactions during Inflation, JCAP, 11 (2018) · Zbl 1527.83120 · doi:10.1088/1475-7516/2018/11/029
[57] Sorbo, Lorenzo, Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton, JCAP, 06 (2011) · doi:10.1088/1475-7516/2011/06/003
[58] Shiraishi, Maresuke; Ricciardone, Angelo; Saga, Shohei, Parity violation in the CMB bispectrum by a rolling pseudoscalar, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/051
[59] Crowder, S. G.; Namba, R.; Mandic, V.; Mukohyama, S.; Peloso, M., Measurement of Parity Violation in the Early Universe using Gravitational-wave Detectors, Phys. Lett. B, 726, 66-71 (2013) · doi:10.1016/j.physletb.2013.08.077
[60] Linde, Andrei; Mooij, Sander; Pajer, Enrico, Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.103506
[61] Bugaev, Edgar; Klimai, Peter, Axion inflation with gauge field production and primordial black holes, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.103501
[62] Garcia-Bellido, Juan; Peloso, Marco; Unal, Caner, Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP, 12 (2016) · doi:10.1088/1475-7516/2016/12/031
[63] Mukohyama, Shinji; Namba, Ryo; Peloso, Marco; Shiu, Gary, Blue Tensor Spectrum from Particle Production during Inflation, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/036
[64] Özsoy, Ogan; Sinha, Kuver; Watson, Scott, How Well Can We Really Determine the Scale of Inflation?, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.103509
[65] Ferreira, Ricardo Z.; Sloth, Martin S., Universal Constraints on Axions from Inflation, JHEP, 12, 139 (2014) · doi:10.1007/JHEP12(2014)139
[66] Özsoy, Ogan, On Synthetic Gravitational Waves from Multi-field Inflation, JCAP, 04 (2018) · Zbl 1536.83196 · doi:10.1088/1475-7516/2018/04/062
[67] Namba, Ryo; Peloso, Marco; Shiraishi, Maresuke; Sorbo, Lorenzo; Unal, Caner, Scale-dependent gravitational waves from a rolling axion, JCAP, 01 (2016) · doi:10.1088/1475-7516/2016/01/041
[68] Silverstein, Eva; Westphal, Alexander, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.106003
[69] McAllister, Liam; Silverstein, Eva; Westphal, Alexander, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.046003
[70] Flauger, Raphael; McAllister, Liam; Silverstein, Eva; Westphal, Alexander, Drifting Oscillations in Axion Monodromy, JCAP, 10 (2017) · Zbl 1515.83347 · doi:10.1088/1475-7516/2017/10/055
[71] Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne, Subleading Effects and the Field Range in Axion Inflation, JCAP, 04 (2016) · Zbl 1294.81198 · doi:10.1088/1475-7516/2016/04/008
[72] Özsoy, Ogan; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne, Mechanisms for Primordial Black Hole Production in String Theory, JCAP, 07 (2018) · Zbl 1527.83061 · doi:10.1088/1475-7516/2018/07/005
[73] Kobayashi, Tatsuo; Oikawa, Akane; Otsuka, Hajime, New potentials for string axion inflation, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.083508
[74] Cabo Bizet, Nana; Loaiza-Brito, Oscar; Zavala, Ivonne, Mirror quintic vacua: hierarchies and inflation, JHEP, 10, 082 (2016) · Zbl 1390.83326 · doi:10.1007/JHEP10(2016)082
[75] Kallosh, Renata; Linde, Andrei; Vercnocke, Bert, Natural Inflation in Supergravity and Beyond, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.041303
[76] Cheng, Shu-Lin; Lee, Wolung; Ng, Kin-Wang, Production of high stellar-mass primordial black holes in trapped inflation, JHEP, 02, 008 (2017) · Zbl 1377.85014 · doi:10.1007/JHEP02(2017)008
[77] Cheng, Shu-Lin; Lee, Wolung; Ng, Kin-Wang, Primordial black holes and associated gravitational waves in axion monodromy inflation, JCAP, 07 (2018) · Zbl 1527.83049 · doi:10.1088/1475-7516/2018/07/001
[78] Berges, Jürgen; Chatrchyan, Aleksandr; Jaeckel, Joerg, Foamy Dark Matter from Monodromies, JCAP, 08 (2019) · doi:10.1088/1475-7516/2019/08/020
[79] Ballesteros, Guillermo; Rey, Julián; Rompineve, Fabrizio, Detuning primordial black hole dark matter with early matter domination and axion monodromy, JCAP, 06 (2020) · Zbl 1491.83047 · doi:10.1088/1475-7516/2020/06/014
[80] Banks, Tom; Dine, Michael; Fox, Patrick J.; Gorbatov, Elie, On the possibility of large axion decay constants, JCAP, 06 (2003) · doi:10.1088/1475-7516/2003/06/001
[81] Malik, Karim A.; Wands, David, Cosmological perturbations, Phys. Rept., 475, 1-51 (2009) · doi:10.1016/j.physrep.2009.03.001
[82] Baumann, Daniel, Inflation (2009) · Zbl 1241.83003
[83] Flauger, Raphael; McAllister, Liam; Pajer, Enrico; Westphal, Alexander; Xu, Gang, Oscillations in the CMB from Axion Monodromy Inflation, JCAP, 06 (2010) · doi:10.1088/1475-7516/2010/06/009
[84] Flauger, Raphael; Pajer, Enrico, Resonant Non-Gaussianity, JCAP, 01 (2011) · doi:10.1088/1475-7516/2011/01/017
[85] Maldacena, Juan Martin, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013 (2003) · doi:10.1088/1126-6708/2003/05/013
[86] Acquaviva, Viviana; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio, Second order cosmological perturbations from inflation, Nucl. Phys. B, 667, 119-148 (2003) · Zbl 1038.83046 · doi:10.1016/S0550-3213(03)00550-9
[87] Peloso, Marco; Sorbo, Lorenzo; Unal, Caner, Rolling axions during inflation: perturbativity and signatures, JCAP, 09 (2016) · doi:10.1088/1475-7516/2016/09/001
[88] BICEP2, Planck Collaboration; Ade, P. A. R., Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.101301
[89] POLARBEAR Collaboration; Ade, P. A. R., A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales from 2 years of POLARBEAR Data, Astrophys. J., 848, 121 (2017) · doi:10.3847/1538-4357/aa8e9f
[90] Shiraishi, Maresuke; Hikage, Chiaki; Namba, Ryo; Namikawa, Toshiya; Hazumi, Masashi, Testing statistics of the CMB B -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.043506
[91] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17 (2016) · doi:10.1051/0004-6361/201525836
[92] Shiraishi, Maresuke, Tensor Non-Gaussianity Search: Current Status and Future Prospects, Front. Astron. Space Sci., 6, 49 (2019) · doi:10.3389/fspas.2019.00049
[93] Matsumura, T., Mission design of LiteBIRD, J. Low Temp. Phys., 176, 733 (2014) · doi:10.1007/s10909-013-0996-1
[94] NANOGrav Collaboration; Arzoumanian, Z., The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background, Astrophys. J., 821, 13 (2016) · doi:10.3847/0004-637X/821/1/13
[95] Lentati, L., European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc., 453, 2576-2598 (2015) · doi:10.1093/mnras/stv1538
[96] Shannon, R. M., Gravitational waves from binary supermassive black holes missing in pulsar observations, Science, 349, 1522-1525 (2015) · Zbl 1355.85008 · doi:10.1126/science.aab1910
[97] Caprini, Chiara, Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP, 04 (2016) · doi:10.1088/1475-7516/2016/04/001
[98] Bartolo, Nicola, Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves, JCAP, 12 (2016) · doi:10.1088/1475-7516/2016/12/026
[99] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW150914: Implications for the stochastic gravitational wave background from binary black holes, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.131102
[100] Domcke, Valerie; Pieroni, Mauro; Binétruy, Pierre, Primordial gravitational waves for universality classes of pseudoscalar inflation, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/031
[101] Lyth, David H., The hybrid inflation waterfall and the primordial curvature perturbation, JCAP, 05 (2012) · doi:10.1088/1475-7516/2012/05/022
[102] Byrnes, Christian T.; Copeland, Edmund J.; Green, Anne M., Primordial black holes as a tool for constraining non-Gaussianity, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.043512
[103] Capela, Fabio; Pshirkov, Maxim; Tinyakov, Peter, Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.123524
[104] Capela, Fabio; Pshirkov, Maxim; Tinyakov, Peter, Adiabatic contraction revisited: implications for primordial black holes, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.083507
[105] Kawasaki, Masahiro; Kusenko, Alexander; Tada, Yuichiro; Yanagida, Tsutomu T., Primordial black holes as dark matter in supergravity inflation models, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.083523
[106] Bartolo, N.; De Luca, V.; Franciolini, G.; Peloso, M.; Racco, D.; Riotto, A., Testing primordial black holes as dark matter with LISA, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.103521
[107] Garcia-Bellido, Juan; Peloso, Marco; Unal, Caner, Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter, JCAP, 09 (2017) · doi:10.1088/1475-7516/2017/09/013
[108] Bartolo, N.; De Luca, V.; Franciolini, G.; Lewis, A.; Peloso, M.; Riotto, A., Primordial Black Hole Dark Matter: LISA Serendipity, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.211301
[109] Bezrukov, F.; Magnin, A.; Shaposhnikov, M.; Sibiryakov, S., Higgs inflation: consistency and generalisations, JHEP, 01, 016 (2011) · Zbl 1214.83051 · doi:10.1007/JHEP01(2011)016
[110] Burgess, C. P.; Lee, Hyun Min; Trott, Michael, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP, 09, 103 (2009) · doi:10.1088/1126-6708/2009/09/103
[111] Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro, Large tensor non-Gaussianity from axion-gauge field dynamics, Phys. Rev. D, 97 (2018) · Zbl 1527.83101 · doi:10.1103/PhysRevD.97.103526
[112] Lue, Arthur; Wang, Li-Min; Kamionkowski, Marc, Cosmological signature of new parity violating interactions, Phys. Rev. Lett., 83, 1506-1509 (1999) · doi:10.1103/PhysRevLett.83.1506
[113] Saito, Shun; Ichiki, Kiyotomo; Taruya, Atsushi, Probing polarization states of primordial gravitational waves with CMB anisotropies, JCAP, 09 (2007) · doi:10.1088/1475-7516/2007/09/002
[114] Gluscevic, Vera; Kamionkowski, Marc, Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.123529
[115] Bartolo, N.; Bertacca, D.; Matarrese, S.; Peloso, M.; Ricciardone, A.; Riotto, A., Anisotropies and non-Gaussianity of the Cosmological Gravitational Wave Background, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.121501
[116] E. Merzbacher, Quantum Mechanics, 3^rd Edition, Wiley (1997). · Zbl 0102.42701
[117] Ferreira, Ricardo Z.; Ganc, Jonathan; Noreña, Jorge; Sloth, Martin S., On the validity of the perturbative description of axions during inflation, JCAP, 04 (2016) · doi:10.1088/1475-7516/2016/04/039
[118] Kobayashi, Takeshi; Takahashi, Fuminobu, Running Spectral Index from Inflation with Modulations, JCAP, 01 (2011) · doi:10.1088/1475-7516/2011/01/026
[119] Easther, Richard; Peiris, Hiranya, Implications of a Running Spectral Index for Slow Roll Inflation, JCAP, 09 (2006) · doi:10.1088/1475-7516/2006/09/010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.