×

Oscillation in power spectrum of primordial gravitational wave as a signature of higher-order stringy corrections. (English) Zbl 1388.83076

Summary: In low-energy effective string theory, \(\alpha'\) corrections involve the coupling of the dilaton field to Gauss-Bonnet term. We assume that the dilaton potential is fine tuned so that the dilaton field may oscillate rapidly for a while around the minimum of its potential but the inflation background is not affected. By numerical method, we find that if the dilaton starts to oscillate at the time of about 60 e-folds before the end of inflation, \(\alpha'\) correction may bring unusual oscillations to the inflationary gravitational wave spectrum, which might be measurably imprinted in the CMB B-mode polarization.

MSC:

83C35 Gravitational waves

References:

[1] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
[2] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett.30 (1979) 682 [INSPIRE].
[3] V.A. Rubakov, M.V. Sazhin and A.V. Veryaskin, Graviton creation in the inflationary universe and the grand unification scale, Phys. Lett.B 115 (1982) 189 [INSPIRE]. · doi:10.1016/0370-2693(82)90641-4
[4] M. Kamionkowski, A. Kosowsky and A. Stebbins, A probe of primordial gravity waves and vorticity, Phys. Rev. Lett.78 (1997) 2058 [astro-ph/9609132] [INSPIRE]. · doi:10.1103/PhysRevLett.78.2058
[5] U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett.78 (1997) 2054 [astro-ph/9609169] [INSPIRE]. · doi:10.1103/PhysRevLett.78.2054
[6] BICEP2, Planck collaboration, P. Ade et al., Joint analysis of BICEP2/Keck Array and Planck data, Phys. Rev. Lett.114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
[7] E. Silverstein, Les Houches lectures on inflationary observables and string theory, arXiv:1311.2312 [INSPIRE]. · Zbl 1326.83009
[8] R.R. Metsaev and A.A. Tseytlin, Order α′ (two loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys.B 293 (1987) 385 [INSPIRE]. · doi:10.1016/0550-3213(87)90077-0
[9] D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys.B 277 (1986) 1 [INSPIRE]. · doi:10.1016/0550-3213(86)90429-3
[10] D. Ciupke, J. Louis and A. Westphal, Higher-derivative supergravity and moduli stabilization, JHEP10 (2015) 094 [arXiv:1505.03092] [INSPIRE]. · Zbl 1388.83776 · doi:10.1007/JHEP10(2015)094
[11] K.-i. Maeda and N. Ohta, Inflation from M-theory with fourth-order corrections and large extra dimensions, Phys. Lett.B 597 (2004) 400 [hep-th/0405205] [INSPIRE]. · Zbl 1247.83285 · doi:10.1016/j.physletb.2004.07.038
[12] K.-i. Maeda and N. Ohta, Inflation from superstring /M theory compactification with higher order corrections. I, Phys. Rev.D 71 (2005) 063520 [hep-th/0411093] [INSPIRE].
[13] K. Akune, K.-i. Maeda and N. Ohta, Inflation from superstring/M-theory compactification with higher order corrections. II. Case of quartic Weyl terms, Phys. Rev.D 73 (2006) 103506 [hep-th/0602242] [INSPIRE].
[14] Z.-K. Guo, N. Ohta and S. Tsujikawa, Realizing scale-invariant density perturbations in low-energy effective string theory, Phys. Rev.D 75 (2007) 023520 [hep-th/0610336] [INSPIRE].
[15] C.P. Burgess, M. Cicoli and F. Quevedo, String inflation after Planck 2013, JCAP11 (2013) 003 [arXiv:1306.3512] [INSPIRE]. · doi:10.1088/1475-7516/2013/11/003
[16] D. Baumann and L. McAllister, Inflation and string theory, arXiv:1404.2601. · Zbl 1339.83003
[17] Y. Cai, Y.-T. Wang and Y.-S. Piao, Oscillating modulation to B-mode polarization from varying propagating speed of primordial gravitational waves, Phys. Rev.D 91 (2015) 103001 [arXiv:1501.06345] [INSPIRE].
[18] J.M. Maldacena and G.L. Pimentel, On graviton non-gaussianities during inflation, JHEP09 (2011) 045 [arXiv:1104.2846] [INSPIRE]. · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[19] X. Gao, T. Kobayashi, M. Yamaguchi and J. Yokoyama, Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model, Phys. Rev. Lett.107 (2011) 211301 [arXiv:1108.3513] [INSPIRE]. · doi:10.1103/PhysRevLett.107.211301
[20] K. Feng, T. Qiu and Y.-S. Piao, Curvaton with nonminimal derivative coupling to gravity, Phys. Lett.B 729 (2014) 99 [arXiv:1307.7864] [INSPIRE]. · Zbl 1331.83075 · doi:10.1016/j.physletb.2014.01.008
[21] K. Feng and T. Qiu, Curvaton with nonminimal derivative coupling to gravity: full perturbation analysis, Phys. Rev.D 90 (2014) 123508 [arXiv:1409.2949] [INSPIRE]. · Zbl 1331.83075
[22] T. Damour, F. Piazza and G. Veneziano, Runaway dilaton and equivalence principle violations, Phys. Rev. Lett.89 (2002) 081601 [gr-qc/0204094] [INSPIRE]. · doi:10.1103/PhysRevLett.89.081601
[23] E. Silverstein, TASI/PiTP/ISS lectures on moduli and microphysics, hep-th/0405068 [INSPIRE]. · Zbl 1084.81063
[24] J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE]. · doi:10.1088/1126-6708/2003/05/013
[25] S. Kawai, M.-a. Sakagami and J. Soda, Instability of one loop superstring cosmology, Phys. Lett.B 437 (1998) 284 [gr-qc/9802033] [INSPIRE]. · Zbl 1161.83444
[26] C. Cartier, J.-c. Hwang and E.J. Copeland, Evolution of cosmological perturbations in nonsingular string cosmologies, Phys. Rev.D 64 (2001) 103504 [astro-ph/0106197] [INSPIRE].
[27] P.-X. Jiang, J.-W. Hu and Z.-K. Guo, Inflation coupled to a Gauss-Bonnet term, Phys. Rev.D 88 (2013) 123508 [arXiv:1310.5579] [INSPIRE].
[28] A. De Felice and S. Tsujikawa, Inflationary gravitational waves in the effective field theory of modified gravity, Phys. Rev.D 91 (2015) 103506 [arXiv:1411.0736] [INSPIRE].
[29] M. Gasperini, Tensor perturbations in high curvature string backgrounds, Phys. Rev.D 56 (1997) 4815 [gr-qc/9704045] [INSPIRE].
[30] C. Cartier, E.J. Copeland and M. Gasperini, Gravitational waves in nonsingular string cosmologies, Nucl. Phys.B 607 (2001) 406 [gr-qc/0101019] [INSPIRE]. · Zbl 0969.83549 · doi:10.1016/S0550-3213(01)00182-1
[31] Y.-S. Piao, B. Feng and X.-m. Zhang, Suppressing CMB quadrupole with a bounce from contracting phase to inflation, Phys. Rev.D 69 (2004) 103520 [hep-th/0310206] [INSPIRE].
[32] Z.-G. Liu, Z.-K. Guo and Y.-S. Piao, Obtaining the CMB anomalies with a bounce from the contracting phase to inflation, Phys. Rev.D 88 (2013) 063539 [arXiv:1304.6527] [INSPIRE].
[33] M. Satoh, S. Kanno and J. Soda, Circular polarization of primordial gravitational waves in string-inspired inflationary cosmology, Phys. Rev.D 77 (2008) 023526 [arXiv:0706.3585] [INSPIRE].
[34] J.A. Adams, B. Cresswell and R. Easther, Inflationary perturbations from a potential with a step, Phys. Rev.D 64 (2001) 123514 [astro-ph/0102236] [INSPIRE].
[35] J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev.D 85 (2012) 023534 [Erratum ibid.D 86 (2012) 069901] [arXiv:1109.0022] [INSPIRE].
[36] L. Senatore, E. Silverstein and M. Zaldarriaga, New sources of gravitational waves during inflation, JCAP08 (2014) 016 [arXiv:1109.0542] [INSPIRE]. · doi:10.1088/1475-7516/2014/08/016
[37] L. Amendola, G. Ballesteros and V. Pettorino, Effects of modified gravity on B-mode polarization, Phys. Rev.D 90 (2014) 043009 [arXiv:1405.7004] [INSPIRE].
[38] M. Raveri, C. Baccigalupi, A. Silvestri and S.-Y. Zhou, Measuring the speed of cosmological gravitational waves, Phys. Rev.D 91 (2015) 061501 [arXiv:1405.7974] [INSPIRE].
[39] Y. Cai, Y.-T. Wang and Y.-S. Piao, Preinflationary primordial perturbations, Phys. Rev.D 92 (2015) 023518 [arXiv:1501.01730] [INSPIRE].
[40] M. Nakashima, R. Saito, Y.-i. Takamizu and J. Yokoyama, The effect of varying sound velocity on primordial curvature perturbations, Prog. Theor. Phys.125 (2011) 1035 [arXiv:1009.4394] [INSPIRE]. · Zbl 1223.83055 · doi:10.1143/PTP.125.1035
[41] K. Becker, M. Becker and J. H. Schwarz, String theory and M-theory, Cambridge University Press, Cambridge U.K. (2007). · Zbl 1123.81001
[42] A. Riotto, Inflation and the theory of cosmological perturbations, hep-ph/0210162 [INSPIRE]. · Zbl 1058.83003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.