×

Curvature perturbations from stochastic particle production during inflation. (English) Zbl 1492.83094


MSC:

83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
83F05 Relativistic cosmology
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
47A10 Spectrum, resolvent
83C57 Black holes
81V80 Quantum optics

References:

[1] Planck collaboration, Planck 2018 results. X. Constraints on inflation, [1807.06211]
[2] F. Beutler, M. Biagetti, D. Green, A. Slosar and B. Wallisch, 2019 Primordial Features from Linear to Nonlinear Scales, https://doi.org/10.1103/PhysRevResearch.1.033209 Phys. Rev. Res.1 033209 [1906.08758] · doi:10.1103/PhysRevResearch.1.033209
[3] D. Chowdhury, J. Martin, C. Ringeval and V. Vennin, 2019 Assessing the scientific status of inflation after Planck, https://doi.org/10.1103/PhysRevD.100.083537 Phys. Rev. D 100 083537 [1902.03951] · doi:10.1103/PhysRevD.100.083537
[4] CMB-S4 collaboration, CMB-S4 Science Book, First Edition, [1610.02743]
[5] S. Shandera et al., 2019 Probing the origin of our Universe through cosmic microwave background constraints on gravitational waves Bull Am. Astron. Soc.51 338 [1903.04700]
[6] P.D. Meerburg et al., Primordial Non-Gaussianity, [1903.04409]
[7] J. Chluba et al., 2019 Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics Bull Am. Astron. Soc.51 184 [1903.04218]
[8] A. Slosar et al., Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations, [1903.09883]
[9] D. Baumann and L. McAllister, 2015 Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press [1404.2601] · Zbl 1339.83003 · doi:10.1017/CBO9781316105733
[10] A. Durakovic, P. Hunt, S.P. Patil and S. Sarkar, 2019 Reconstructing the EFT of Inflation from Cosmological Data, https://doi.org/10.21468/SciPostPhys.7.4.049 SciPost Phys.7 049 [1904.00991] · doi:10.21468/SciPostPhys.7.4.049
[11] M.Yu. Khlopov, 2010 Primordial Black Holes, https://doi.org/10.1088/1674-4527/10/6/001 Res. Astron. Astrophys.10 495 [0801.0116] · doi:10.1088/1674-4527/10/6/001
[12] G. Panagopoulos and E. Silverstein, Primordial Black Holes from non-Gaussian tails, [1906.02827]
[13] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, 2014 Nonperturbative Dynamics Of Reheating After Inflation: A Review, https://doi.org/10.1142/S0218271815300037 Int. J. Mod. Phys. D 24 1530003 [1410.3808] · Zbl 1308.83155 · doi:10.1142/S0218271815300037
[14] K.D. Lozanov, Lectures on Reheating after Inflation, [1907.04402] · Zbl 1470.83001
[15] J. Chluba and R.A. Sunyaev, 2012 The evolution of CMB spectral distortions in the early Universe, https://doi.org/10.1111/j.1365-2966.2011.19786.x Mon. Not. Roy. Astron. Soc.419 1294 [1109.6552] · doi:10.1111/j.1365-2966.2011.19786.x
[16] M.A. Amin and D. Baumann, 2016 From Wires to Cosmology J. Cosmol. Astropart. Phys.2016 02 045 [1512.02637]
[17] M.A. Amin, M.A.G. Garcia, H.-Y. Xie and O. Wen, 2017 Multifield Stochastic Particle Production: Beyond a Maximum Entropy Ansatz J. Cosmol. Astropart. Phys.2017 09 015 [1706.02319] · Zbl 1515.83279
[18] M.A.G. Garcia, M.A. Amin, S.G. Carlsten and D. Green, 2019 Stochastic Particle Production in a de Sitter Background J. Cosmol. Astropart. Phys.2019 05 012 [1902.09598] · Zbl 1481.83105
[19] D. Green, 2015 Disorder in the Early Universe J. Cosmol. Astropart. Phys.2015 03 020 [1409.6698]
[20] V. Zanchin, A. Maia Jr., W. Craig and R.H. Brandenberger, 1998 Reheating in the presence of noise, https://doi.org/10.1103/PhysRevD.57.4651 Phys. Rev. D 57 4651 [hep-ph/9709273] · doi:10.1103/PhysRevD.57.4651
[21] B.A. Bassett, 1998 Inflationary reheating classes via spectral methods, https://doi.org/10.1103/PhysRevD.58.021303 Phys. Rev. D 58 021303 [hep-ph/9709443] · doi:10.1103/PhysRevD.58.021303
[22] P.W. Anderson, 1958 Absence of Diffusion in Certain Random Lattices, https://doi.org/10.1103/PhysRev.109.1492 Phys. Rev.1091492 · doi:10.1103/PhysRev.109.1492
[23] P. Mello and N. Kumar, 2004 Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations, No. 4, Oxford University Press · doi:10.1093/acprof:oso/9780198525820.001.0001
[24] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, 2008 The Effective Field Theory of Inflation J. High Energy Phys. JHEP03(2008)014 [0709.0293]
[25] S. Weinberg, 2008 Effective Field Theory for Inflation, https://doi.org/10.1103/PhysRevD.77.123541 Phys. Rev. D 77 123541 [0804.4291] · doi:10.1103/PhysRevD.77.123541
[26] S.H.H. Tye, J. Xu and Y. Zhang, 2009 Multi-field Inflation with a Random Potential J. Cosmol. Astropart. Phys.2009 04 018 [0812.1944]
[27] D. Lopez Nacir, R.A. Porto, L. Senatore and M. Zaldarriaga, 2012 Dissipative effects in the Effective Field Theory of Inflation J. High Energy Phys. JHEP01(2012)075 [1109.4192] · Zbl 1306.81425 · doi:10.1007/JHEP01(2012)075
[28] M. Dias, J. Frazer and A.R. Liddle, 2012 Multifield consequences for D-brane inflation J. Cosmol. Astropart. Phys.2012 06 020 [Erratum ibid 03 (2013) E01] [1203.3792]
[29] L. McAllister, S. Renaux-Petel and G. Xu, 2012 A Statistical Approach to Multifield Inflation: Many-field Perturbations Beyond Slow Roll J. Cosmol. Astropart. Phys.2012 10 046 [1207.0317]
[30] M.C.D. Marsh, L. McAllister, E. Pajer and T. Wrase, 2013 Charting an Inflationary Landscape with Random Matrix Theory J. Cosmol. Astropart. Phys.2013 11 040 [1307.3559]
[31] R. Easther, J. Frazer, H.V. Peiris and L.C. Price, 2014 Simple predictions from multifield inflationary models, https://doi.org/10.1103/PhysRevLett.112.161302 Phys. Rev. Lett.112 161302 [1312.4035] · doi:10.1103/PhysRevLett.112.161302
[32] L.C. Price, J. Frazer, J. Xu, H.V. Peiris and R. Easther, 2015 MultiModeCode: An efficient numerical solver for multifield inflation J. Cosmol. Astropart. Phys.2015 03 005 [1410.0685]
[33] L.C. Price, H.V. Peiris, J. Frazer and R. Easther, 2016 Designing and testing inflationary models with Bayesian networks J. Cosmol. Astropart. Phys.2016 02 049 [1511.00029]
[34] M. Dias, J. Frazer and M.C.D. Marsh, 2016 Simple emergent power spectra from complex inflationary physics, https://doi.org/10.1103/PhysRevLett.117.141303 Phys. Rev. Lett.117 141303 [1604.05970] · doi:10.1103/PhysRevLett.117.141303
[35] O. Özsoy, J.T. Giblin, E. Nesbit, G. Şengör and S. Watson, 2017 Toward an Effective Field Theory Approach to Reheating, https://doi.org/10.1103/PhysRevD.96.123524 Phys. Rev. D 96 123524 [1701.01455] · doi:10.1103/PhysRevD.96.123524
[36] T. Bjorkmo and M.C.D. Marsh, 2018 Manyfield Inflation in Random Potentials J. Cosmol. Astropart. Phys.2018 02 037 [1709.10076] · Zbl 1527.83109
[37] Z.-K. Guo, 2017 Large number limit of multifield inflation, https://doi.org/10.1103/PhsRevD.96.123521 Phys. Rev. D 96 123521 [1708.06136] · doi:10.1103/PhsRevD.96.123521
[38] M. Dias, J. Frazer and M.c.D. Marsh, 2018 Seven Lessons from Manyfield Inflation in Random Potentials J. Cosmol. Astropart. Phys.2018 01 036 [1706.03774] · Zbl 1527.83119
[39] M. Dias, J. Frazer and A. Westphal, 2019 Inflation as an Information Bottleneck — A strategy for identifying universality classes and making robust predictions J. High Energy Phys. JHEP05(2019)065 [1810.05199] · Zbl 1416.83152 · doi:10.1007/JHEP05(2019)065
[40] M. Jain and V. Vanchurin, 2016 Generating Functionals for Quantum Field Theories with Random Potentials J. High Energy Phys. JHEP01(2016)107 [1506.03840] · Zbl 1388.81416 · doi:10.1007/JHEP01(2016)107
[41] A. Berera, M. Gleiser and R.O. Ramos, 1999 A First principles warm inflation model that solves the cosmological horizon/flatness problems, https://doi.org/10.1103/PhysRevLett.83.264 Phys. Rev. Lett.83 264 [hep-ph/9809583] · doi:10.1103/PhysRevLett.83.264
[42] L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, 2004 Beauty is attractive: Moduli trapping at enhanced symmetry points J. High Energy Phys. JHEP05(2004)030 [hep-th/0403001]
[43] D. Green, B. Horn, L. Senatore and E. Silverstein, 2009 Trapped Inflation, https://doi.org/10.1103/PhysRevD.80.063533 Phys. Rev. D 80 063533 [0902.1006] · doi:10.1103/PhysRevD.80.063533
[44] J.L. Cook and L. Sorbo, 2012 Particle production during inflation and gravitational waves detectable by ground-based interferometers, https://doi.org/10.1103/PhysRevD.86.069901 Phys. Rev. D 85 023534 [Erratum ibid D 86 (2012) 069901] [1109.0022] · doi:10.1103/PhysRevD.86.069901
[45] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou, 2012 Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, https://doi.org/10.1103/PhysRevD.86.103508 Phys. Rev. D 86 103508 [1206.6117] · doi:10.1103/PhysRevD.86.103508
[46] L. Sorbo, 2011 Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton J. Cosmol. Astropart. Phys.2011 06 003 [1101.1525]
[47] W. Lee, K.-W. Ng, I.-C. Wang and C.-H. Wu, 2011 Trapping effects on inflation, https://doi.org/10.1103/PhysRevD.84.063527 Phys. Rev. D 84 063527 [1101.4493] · doi:10.1103/PhysRevD.84.063527
[48] P. Adshead, E. Martinec and M. Wyman, 2013 Perturbations in Chromo-Natural Inflation J. High Energy Phys. JHEP09(2013)087 [1305.2930] · Zbl 1342.83510 · doi:10.1007/JHEP09(2013)087
[49] M. Mirbabayi, L. Senatore, E. Silverstein and M. Zaldarriaga, 2015 Gravitational Waves and the Scale of Inflation, https://doi.org/10.1103/PhysRevD.91.063518 Phys. Rev. D 91 063518 [1412.0665] · doi:10.1103/PhysRevD.91.063518
[50] S. Mukohyama, R. Namba, M. Peloso and G. Shiu, 2014 Blue Tensor Spectrum from Particle Production during Inflation J. Cosmol. Astropart. Phys.2014 08 036 [1405.0346]
[51] P. Adshead and E.I. Sfakianakis, 2015 Fermion production during and after axion inflation J. Cosmol. Astropart. Phys.2015 11 021 [1508.00891]
[52] S.-L. Cheng, W. Lee and K.-W. Ng, 2016 Numerical study of pseudoscalar inflation with an axion-gauge field coupling, https://doi.org/10.1103/PhysRevD.93.063510 Phys. Rev. D 93 063510 [1508.00251] · doi:10.1103/PhysRevD.93.063510
[53] L. Pearce, M. Peloso and L. Sorbo, 2016 The phenomenology of trapped inflation J. Cosmol. Astropart. Phys.2016 11 058 [1603.08021]
[54] K.D. Lozanov, A. Maleknejad and E. Komatsu, 2019 Schwinger Effect by an SU(2) Gauge Field during Inflation J. High Energy Phys. JHEP02(2019)041 [1805.09318] · Zbl 1411.83159 · doi:10.1007/JHEP02(2019)041
[55] A.A. Abolhasani and M.M. Sheikh-Jabbari, 2019 Resonant reconciliation of convex-potential inflation models and the Planck data, https://doi.org/10.1103/PhysRevD.100.103505 Phys. Rev. D 100 103505 [1903.05120] · doi:10.1103/PhysRevD.100.103505
[56] L. Mirzagholi, A. Maleknejad and K.D. Lozanov, 2020 Production and backreaction of fermions from axion-SU(2) gauge fields during inflation, https://doi.org/10.1103/PhysRevD.101.083528 Phys. Rev. D 101 083528 [1905.09258] · doi:10.1103/PhysRevD.101.083528
[57] A.A. Abolhasani and S. Jazayeri, 2019 Cherenkov radiation in the sky: Measuring the sound speed of primordial scalar fluctuations, https://doi.org/10.1103/PhysRevD.100.023520 Phys. Rev. D 100 023520 [1904.05589] · doi:10.1103/PhysRevD.100.023520
[58] O. Özsoy, 2018 On Synthetic Gravitational Waves from Multi-field Inflation J. Cosmol. Astropart. Phys.2018 04 062 [1712.01991] · Zbl 1536.83196
[59] A. Berera, 1995 Warm inflation, https://doi.org/10.1103/PhysRevLett.75.3218 Phys. Rev. Lett.75 3218 [astro-ph/9509049] · doi:10.1103/PhysRevLett.75.3218
[60] R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, 2010 Oscillations in the CMB from Axion Monodromy Inflation J. Cosmol. Astropart. Phys.2010 06 009 [0907.2916]
[61] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, 2017 Productive Interactions: heavy particles and non-Gaussianity J. Cosmol. Astropart. Phys.2017 10 058 [1606.00513] · Zbl 1515.83348
[62] J.R. Bond, A.V. Frolov, Z. Huang and L. Kofman, 2009 Non-Gaussian Spikes from Chaotic Billiards in Inflation Preheating, https://doi.org/10.1103/PhysRevLett.103.071301 Phys. Rev. Lett.103 071301 [0903.3407] · doi:10.1103/PhysRevLett.103.071301
[63] J.R. Bond, J. Braden, A.V. Frolov and Z. Huang, Intermittent non-gaussianity, in progress
[64] K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamaki and A. Vaihkonen, 2005 Non-Gaussianity from preheating, https://doi.org/10.1103/PhysRevLett.94.161301 Phys. Rev. Lett.94 161301 [astro-ph/0411394] · doi:10.1103/PhysRevLett.94.161301
[65] A. Chambers and A. Rajantie, 2008 Lattice calculation of non-Gaussianity from preheating, https://doi.org/10.1103/PhysRevLett.100.041302 Phys. Rev. Lett.100 041302 [Erratum ibid 101 (2008) 149903] [0710.4133] · doi:10.1103/PhysRevLett.100.041302
[66] A. Chambers and A. Rajantie, 2008 Non-Gaussianity from massless preheating J. Cosmol. Astropart. Phys.2008 08 002 [0805.4795]
[67] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[68] A.S. Goncharov, A.D. Linde and M.I. Vysotsky, 1984 Cosmological problems for spontaneously broken supergravity, https://doi.org/10.1016/0370-2693(84)90116-3 Phys. Lett.147B279 · doi:10.1016/0370-2693(84)90116-3
[69] J.L. Evans, M.A.G. Garcia and K.A. Olive, 2014 The Moduli and Gravitino (non)-Problems in Models with Strongly Stabilized Moduli J. Cosmol. Astropart. Phys.2014 03 022 [1311.0052]
[70] L. Parker and S.A. Fulling, 1974 Adiabatic regularization of the energy momentum tensor of a quantized field in homogeneous spaces, https://doi.org/10.1103/PhysRevD.9.341 Phys. Rev. D 9 341 · doi:10.1103/PhysRevD.9.341
[71] N.D. Birrell, 1978 The Application of Adiabatic Regularization to Calculations of Cosmological Interest, https://doi.org/10.1098/rspa.1978.0114 Proc. Roy. Soc. Lond. A 361 513 · doi:10.1098/rspa.1978.0114
[72] P.R. Anderson and L. Parker, 1987 Adiabatic Regularization in Closed Robertson-walker Universes, https://doi.org/10.1103/PhysRevD.36.2963 Phys. Rev. D 36 2963 · doi:10.1103/PhysRevD.36.2963
[73] S.A. Fulling, 1989 Aspects of Quantum Field Theory in Curved Space-time London Math. Soc. Student Texts17 1 · Zbl 0677.53081
[74] L. Parker, 2009 Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge University Press · Zbl 1180.81001 · doi:10.1017/CBO9780511813924
[75] K. Kohri and H. Matsui, 2018 Electroweak Vacuum Instability and Renormalized Vacuum Field Fluctuations in Friedmann-Lemaitre-Robertson-Walker Background, https://doi.org/10.1103/PhysRevD.98.103521 Phys. Rev. D 98 103521 [1704.06884] · doi:10.1103/PhysRevD.98.103521
[76] P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, 2006 Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies J. High Energy Phys. JHEP12(2006)080 [hep-th/0606090] · Zbl 1226.83089
[77] D. Baumann and D. Green, 2011 Equilateral Non-Gaussianity and New Physics on the Horizon J. Cosmol. Astropart. Phys.2011 09 014 [1102.5343]
[78] A.R. Liddle and S.M. Leach, 2003 How long before the end of inflation were observable perturbations produced?, https://doi.org/10.1103/PhysRevD.68.103503 Phys. Rev. D 68 103503 [astro-ph/0305263] · doi:10.1103/PhysRevD.68.103503
[79] S.M. Leach, A.R. Liddle, J. Martin and D.J. Schwarz, 2002 Cosmological parameter estimation and the inflationary cosmology, https://doi.org/10.1103/PhysRevD.66.023515 Phys. Rev. D 66 023515 [astro-ph/0202094] · doi:10.1103/PhysRevD.66.023515
[80] E. Parzen, 1962 On estimation of a probability density function and mode, https://doi.org/10.1214/aoms/1177704472 Annals Math. Statist.33 1065 · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[81] A. O’Hagan and T. Leonard, 1976 Bayes estimation subject to uncertainty about parameter constraints, https://doi.org/10.1093/biomet/63.1.201 Biometrika63201 · Zbl 0326.62025 · doi:10.1093/biomet/63.1.201
[82] A. Azzalini, 1985 A class of distributions which includes the normal ones Scand J. Statist.12 171 · Zbl 0581.62014
[83] Z. Wu, X. Li, R. Husnay, V. Chakravarthy, B. Wang and Z. Wu, A novel highly accurate log skew normal approximation method to lognormal sum distributions, in 2009 IEEE Wireless Communications and Networking Conference, Budapest, Hungary, 5-8 April 2009, pp. 1-6 · doi:10.1109/WCNC.2009.4917525
[84] M. Ben Hcine and R. Bouallegue, 2015 On the approximation of the sum of lognormals by a log skew normal distribution, https://doi.org/10.5121/ijcnc.2015.7110 Int. J. Comput. Network. Comm.7 135 · doi:10.5121/ijcnc.2015.7110
[85] G.D. Lin and J. Stoyanov, 2009 The logarithmic skew-normal distributions are moment-indeterminate J. Appl. Probab.46 909. http://www.jstor.org/stable/25662467 · Zbl 1175.60013
[86] T. Nakama, J. Chluba and M. Kamionkowski, 2017 Shedding light on the small-scale crisis with CMB spectral distortions, https://doi.org/10.1103/PhysRevD.95.121302 Phys. Rev. D 95 121302 [1703.10559] · doi:10.1103/PhysRevD.95.121302
[87] G. Sato-Polito, E.D. Kovetz and M. Kamionkowski, 2019 Constraints on the primordial curvature power spectrum from primordial black holes, https://doi.org/10.1103/PhysRevD.100.063521 Phys. Rev. D 100 063521 [1904.10971] · doi:10.1103/PhysRevD.100.063521
[88] J. Bramante, J. Kumar, E. Nelson and S. Shandera, 2013 Cosmic Variance of the Spectral Index from Mode Coupling J. Cosmol. Astropart. Phys.2013 11 021 [1307.5083]
[89] J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, 2017 Starobinsky-like Inflation, Supercosmology and Neutrino Masses in No-Scale Flipped SU(5) J. Cosmol. Astropart. Phys.2017 07 006 [1704.07331]
[90] L. Kofman, A.D. Linde and A.A. Starobinsky, 1997 Towards the theory of reheating after inflation, https://doi.org/10.1103/PhysRevD.56.3258 Phys. Rev. D 56 3258 [hep-ph/9704452] · doi:10.1103/PhysRevD.56.3258
[91] C. Caprini and D.G. Figueroa, 2018 Cosmological Backgrounds of Gravitational Waves, https://doi.org/10.1088/1361-6382/aac608 Class. Quant. Grav.35 163001 [1801.04268] · Zbl 1409.83039 · doi:10.1088/1361-6382/aac608
[92] D. Griffiths and S. Walborn, 1999 Dirac deltas and discontinuous functions, https://doi.org/10.1119/1.19283 Am. J. Phys.67 446 · Zbl 1219.46038 · doi:10.1119/1.19283
[93] D.H. Bailey, MPFUN2015: A thread-safe arbitrary precision package, http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.