×

Primordial black holes and associated gravitational waves in axion monodromy inflation. (English) Zbl 1527.83049

Summary: In the axion monodromy inflation, the inflation is driven by the axion with super-Planckian field values in a monomial potential with superimposed sinusoidal modulations. The coupling of the axion to massless gauge fields can induce copious particle production during inflation, resulting in large non-Gaussian curvature perturbation that leads to the formation of primordial black holes. In this paper, we explore the parameter space in the axion monodromy inflation model that favors the formation of primordial black holes with masses ranging from \(10^8\) grams to 20 solar masses. We also study the associated gravitational waves and their detection in pulsar timing arrays and interferometry experiments.

MSC:

83C57 Black holes
83C35 Gravitational waves

References:

[1] K.A. Olive, 1990 Inflation https://doi.org/10.1016/0370-1573(90)90144-Q Phys. Rept.190 307 · doi:10.1016/0370-1573(90)90144-Q
[2] D.H. Lyth and A. Riotto, 1999 Particle physics models of inflation and the cosmological density perturbation https://doi.org/10.1016/S0370-1573(98)00128-8 Phys. Rept.314 1 [hep-ph/9807278] · doi:10.1016/S0370-1573(98)00128-8
[3] E. Silverstein, 2017 TASI lectures on cosmological observables and string theory in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., June 1-26, 2015, pp. 545-606, https://doi.org/10.1142/9789813149441_0009 , World Scientific, Singapore [1606.03640] · Zbl 1358.83109 · doi:10.1142/9789813149441_0009
[4] L. McAllister, E. Silverstein, A. Westphal and T. Wrase, 2014 The Powers of Monodromy J. High Energy Phys. JHEP09(2014)123 [1405.3652] · doi:10.1007/JHEP09(2014)123
[5] F. Marchesano, G. Shiu and A.M. Uranga, 2014 F-term Axion Monodromy Inflation J. High Energy Phys. JHEP09(2014)184 [1404.3040] · doi:10.1007/JHEP09(2014)184
[6] R. Flauger, L. McAllister, E. Silverstein and A. Westphal, 2017 Drifting Oscillations in Axion Monodromy J. Cosmol. Astropart. Phys.2017 10 055 [1412.1814] · Zbl 1515.83347
[7] E. Silverstein and A. Westphal, 2008 Monodromy in the CMB: Gravity Waves and String Inflation https://doi.org/10.1103/PhysRevD.78.106003 Phys. Rev. D 78 106003 [0803.3085] · doi:10.1103/PhysRevD.78.106003
[8] L. McAllister, E. Silverstein and A. Westphal, 2010 Gravity Waves and Linear Inflation from Axion Monodromy https://doi.org/10.1103/PhysRevD.82.046003 Phys. Rev. D 82 046003 [0808.0706] · doi:10.1103/PhysRevD.82.046003
[9] R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, 2010 Oscillations in the CMB from Axion Monodromy Inflation J. Cosmol. Astropart. Phys.2010 06 009 [0907.2916]
[10] R. Flauger and E. Pajer, 2011 Resonant Non-Gaussianity J. Cosmol. Astropart. Phys.2011 01 017 [1002.0833]
[11] N. Kaloper, A. Lawrence and L. Sorbo, 2011 An Ignoble Approach to Large Field Inflation J. Cosmol. Astropart. Phys.2011 03 023 [1101.0026]
[12] T. Higaki, T. Kobayashi, O. Seto and Y. Yamaguchi, 2014 Axion monodromy inflation with multi-natural modulations J. Cosmol. Astropart. Phys.2014 10 025 [1405.0775]
[13] E. Palti and T. Weigand, 2014 Towards large r from [p, q]-inflation J. High Energy Phys. JHEP04(2014)155 [1403.7507] · doi:10.1007/JHEP04(2014)155
[14] Y. Wan, S. Li, M. Li, T. Qiu, Y. Cai and X. Zhang, 2014 Single field inflation with modulated potential in light of the Planck and BICEP2 https://doi.org/10.1103/PhysRevD.90.023537 Phys. Rev. D 90 023537 [1405.2784] · doi:10.1103/PhysRevD.90.023537
[15] Q.E. Minor and M. Kaplinghat, 2015 Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales https://doi.org/10.1103/PhysRevD.91.063504 Phys. Rev. D 91 063504 [1411.0689] · doi:10.1103/PhysRevD.91.063504
[16] L.C. Price, 2015 Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation https://doi.org/10.1103/PhysRevD.92.103507 Phys. Rev. D 92 103507 [1507.08360] · doi:10.1103/PhysRevD.92.103507
[17] K. Choi and H. Kim, 2016 Aligned natural inflation with modulations https://doi.org/10.1016/j.physletb.2016.05.097 Phys. Lett. B 759 520 [1511.07201] · doi:10.1016/j.physletb.2016.05.097
[18] N. Barnaby and M. Peloso, 2011 Large NonGaussianity in Axion Inflation https://doi.org/10.1103/PhysRevLett.106.181301 Phys. Rev. Lett.106 181301 [1011.1500] · doi:10.1103/PhysRevLett.106.181301
[19] N. Barnaby, R. Namba and M. Peloso, 2011 Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large NonGaussianity J. Cosmol. Astropart. Phys.2011 04 009 [1102.4333]
[20] P.D. Meerburg and E. Pajer, 2013 Observational Constraints on Gauge Field Production in Axion Inflation J. Cosmol. Astropart. Phys.2013 02 017 [1203.6076]
[21] N. Barnaby, E. Pajer and M. Peloso, 2012 Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB and Gravitational Waves at Interferometers https://doi.org/10.1103/PhysRevD.85.023525 Phys. Rev. D 85 023525 [1110.3327] · doi:10.1103/PhysRevD.85.023525
[22] J.L. Cook and L. Sorbo, 2012 Particle production during inflation and gravitational waves detectable by ground-based interferometers https://doi.org/10.1103/PhysRevD.86.069901 Phys. Rev. D 85 023534 [Erratum ibid D 86 (2012) 069901] [1109.0022] · doi:10.1103/PhysRevD.86.069901
[23] M.M. Anber and L. Sorbo, 2012 Non-Gaussianities and chiral gravitational waves in natural steep inflation https://doi.org/10.1103/PhysRevD.85.123537 Phys. Rev. D 85 123537 [1203.5849] · doi:10.1103/PhysRevD.85.123537
[24] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou, 2012 Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton https://doi.org/10.1103/PhysRevD.86.103508 Phys. Rev. D 86 103508 [1206.6117] · doi:10.1103/PhysRevD.86.103508
[25] D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, 2017 Baryon asymmetry and gravitational waves from pseudoscalar inflation J. Cosmol. Astropart. Phys.2017 12 011 [1707.07943]
[26] A. Linde, S. Mooij and E. Pajer, 2013 Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes https://doi.org/10.1103/PhysRevD.87.103506 Phys. Rev. D 87 103506 [1212.1693] · doi:10.1103/PhysRevD.87.103506
[27] C.-M. Lin and K.-W. Ng, 2013 Primordial Black Holes from Passive Density Fluctuations https://doi.org/10.1016/j.physletb.2012.12.052 Phys. Lett. B 718 1181 [1206.1685] · doi:10.1016/j.physletb.2012.12.052
[28] E. Bugaev and P. Klimai, 2014 Axion inflation with gauge field production and primordial black holes https://doi.org/10.1103/PhysRevD.90.103501 Phys. Rev. D 90 103501 [1312.7435] · doi:10.1103/PhysRevD.90.103501
[29] E. Erfani, 2016 Primordial Black Holes Formation from Particle Production during Inflation J. Cosmol. Astropart. Phys.2016 04 020 [1511.08470]
[30] S.-L. Cheng, W. Lee and K.-W. Ng, 2016 Numerical study of pseudoscalar inflation with an axion-gauge field coupling https://doi.org/10.1103/PhysRevD.93.063510 Phys. Rev. D 93 063510 [1508.00251] · doi:10.1103/PhysRevD.93.063510
[31] S.-L. Cheng, W. Lee and K.-W. Ng, 2017 Production of high stellar-mass primordial black holes in trapped inflation J. High Energy Phys. JHEP02(2017)008 [1606.00206] · Zbl 1377.85014 · doi:10.1007/JHEP02(2017)008
[32] J. García-Bellido, M. Peloso and C. Unal, 2016 Gravitational waves at interferometer scales and primordial black holes in axion inflation J. Cosmol. Astropart. Phys.2016 12 031 [1610.03763]
[33] J. García-Bellido, M. Peloso and C. Unal, 2017 Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter J. Cosmol. Astropart. Phys.2017 09 013 [1707.02441]
[34] V. Domcke, F. Muia, M. Pieroni and L.T. Witkowski, 2017 PBH dark matter from axion inflation J. Cosmol. Astropart. Phys.2017 07 048 [1704.03464] · Zbl 1515.83335
[35] M. Drees and E. Erfani, 2012 Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models J. Cosmol. Astropart. Phys.2012 01 035 [1110.6052]
[36] S. Clesse and J. García-Bellido, 2015 Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies https://doi.org/10.1103/PhysRevD.92.023524 Phys. Rev. D 92 023524 [1501.07565] · doi:10.1103/PhysRevD.92.023524
[37] M. Kawasaki and Y. Tada, 2016 Can massive primordial black holes be produced in mild waterfall hybrid inflation? J. Cosmol. Astropart. Phys.2016 08 041 [1512.03515]
[38] M. Kawasaki, N. Sugiyama and T. Yanagida, 1998 Primordial black hole formation in a double inflation model in supergravity https://doi.org/10.1103/PhysRevD.57.6050 Phys. Rev. D 57 6050 [hep-ph/9710259] · doi:10.1103/PhysRevD.57.6050
[39] J. Yokoyama, 1998 Chaotic new inflation and formation of primordial black holes https://doi.org/10.1103/PhysRevD.58.083510 Phys. Rev. D 58 083510 [astro-ph/9802357] · doi:10.1103/PhysRevD.58.083510
[40] T. Kawaguchi, M. Kawasaki, T. Takayama, M. Yamaguchi and J. Yokoyama, 2008 Formation of intermediate-mass black holes as primordial black holes in the inflationary cosmology with running spectral index https://doi.org/10.1111/j.1365-2966.2008.13523.x Mon. Not. Roy. Astron. Soc.388 1426 [0711.3886] · doi:10.1111/j.1365-2966.2008.13523.x
[41] P.H. Frampton, M. Kawasaki, F. Takahashi and T.T. Yanagida, 2010 Primordial Black Holes as All Dark Matter J. Cosmol. Astropart. Phys.2010 04 023 [1001.2308]
[42] M. Kawasaki, A. Kusenko, Y. Tada and T.T. Yanagida, 2016 Primordial black holes as dark matter in supergravity inflation models https://doi.org/10.1103/PhysRevD.94.083523 Phys. Rev. D 94 083523 [1606.07631] · doi:10.1103/PhysRevD.94.083523
[43] M. Kawasaki, N. Kitajima and T.T. Yanagida, 2013 Primordial black hole formation from an axionlike curvaton model https://doi.org/10.1103/PhysRevD.87.063519 Phys. Rev. D 87 063519 [1207.2550] · doi:10.1103/PhysRevD.87.063519
[44] K. Kohri, C.-M. Lin and T. Matsuda, 2013 Primordial black holes from the inflating curvaton https://doi.org/10.1103/PhysRevD.87.103527 Phys. Rev. D 87 103527 [1211.2371] · doi:10.1103/PhysRevD.87.103527
[45] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XX. Constraints on inflation https://doi.org/10.1051/0004-6361/201525898 Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[46] M.M. Anber and L. Sorbo, 2010 Naturally inflating on steep potentials through electromagnetic dissipation https://doi.org/10.1103/PhysRevD.81.043534 Phys. Rev. D 81 043534 [0908.4089] · doi:10.1103/PhysRevD.81.043534
[47] K.-W. Ng, 1996 Graviton mode function in inflationary cosmology https://doi.org/10.1142/S0217751X96001528 Int. J. Mod. Phys. A 11 3175 [gr-qc/9311002] · doi:10.1142/S0217751X96001528
[48] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XIII. Cosmological parameters https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys.594 A13 [1502.01589] · doi:10.1051/0004-6361/201525830
[49] R.Z. Ferreira, J. Ganc, J. Noreña and M.S. Sloth, 2016 On the validity of the perturbative description of axions during inflation J. Cosmol. Astropart. Phys.2016 04 039 [1512.06116]
[50] M. Peloso, L. Sorbo and C. Unal, 2016 Rolling axions during inflation: perturbativity and signatures J. Cosmol. Astropart. Phys.2016 09 001 [1606.00459]
[51] T. Fujita, R. Namba, Y. Tada, N. Takeda and H. Tashiro, 2015 Consistent generation of magnetic fields in axion inflation models J. Cosmol. Astropart. Phys.2015 05 054 [1503.05802]
[52] B. Carr, F. Kühnel and M. Sandstad, 2016 Primordial Black Holes as Dark Matter https://doi.org/10.1103/PhysRevD.94.083504 Phys. Rev. D 94 083504 [1607.06077] · doi:10.1103/PhysRevD.94.083504
[53] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen and H. Veermäe, 2017 Primordial black hole constraints for extended mass functions https://doi.org/10.1103/PhysRevD.96.023514 Phys. Rev. D 96 023514 [1705.05567] · doi:10.1103/PhysRevD.96.023514
[54] L. Sorbo, 2011 Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton J. Cosmol. Astropart. Phys.2011 06 003 [1101.1525]
[55] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada and T.T. Yanagida, 2017 Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments https://doi.org/10.1103/PhysRevD.95.123510 Phys. Rev. D 95 123510 [1611.06130] · doi:10.1103/PhysRevD.95.123510
[56] N. Orlofsky, A. Pierce and J.D. Wells, 2017 Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves, https://doi.org/10.1103/PhysRevD.95.063518 Phys. Rev. D 95 063518 [1612.05279] · doi:10.1103/PhysRevD.95.063518
[57] T. Nakama, J. Silk and M. Kamionkowski, 2017 Stochastic gravitational waves associated with the formation of primordial black holes https://doi.org/10.1103/PhysRevD.95.043511 Phys. Rev. D 95 043511 [1612.06264] · doi:10.1103/PhysRevD.95.043511
[58] L. Lentati et al., 2015 European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background https://doi.org/10.1093/mnras/stv1538 Mon. Not. Roy. Astron. Soc.453 2576 [1504.03692] · doi:10.1093/mnras/stv1538
[59] NANOGrav collaboration, Z. Arzoumanian et al., 2016 The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background https://doi.org/10.3847/0004-637X/821/1/13 Astrophys. J.821 13 [1508.03024] · doi:10.3847/0004-637X/821/1/13
[60] R.M. Shannon et al., 2015 Gravitational waves from binary supermassive black holes missing in pulsar observations https://doi.org/10.1126/science.aab1910 Science349 1522 [1509.07320] · Zbl 1355.85008 · doi:10.1126/science.aab1910
[61] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., 2017 Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run https://doi.org/10.1103/PhysRevLett.118.121101 Phys. Rev. Lett.118 121101 [1612.02029] · doi:10.1103/PhysRevLett.118.121101
[62] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., 2016 GW150914: Implications for the stochastic gravitational wave background from binary black holes https://doi.org/10.1103/PhysRevLett.116.131102 Phys. Rev. Lett.116 131102 [1602.03847] · doi:10.1103/PhysRevLett.116.131102
[63] N. Bartolo et al., 2016 Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves J. Cosmol. Astropart. Phys.2016 12 026 [1610.06481]
[64] G. Janssen et al., Gravitational wave astronomy with the SKA, POS(AASKA14)037 [1501.00127]
[65] T. Banks, M. Dine, P.J. Fox and E. Gorbatov, 2003 On the possibility of large axion decay constants J. Cosmol. Astropart. Phys.2003 06 001 [hep-th/0303252]
[66] K. Choi, H. Kim and S. Yun, 2014 Natural inflation with multiple sub-Planckian axions https://doi.org/10.1103/PhysRevD.90.023545 Phys. Rev. D 90 023545 [1404.6209] · doi:10.1103/PhysRevD.90.023545
[67] K. Choi and S.H. Im, 2016 Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry J. High Energy Phys. JHEP01(2016)149 [1511.00132] · Zbl 1388.81796 · doi:10.1007/JHEP01(2016)149
[68] D.E. Kaplan and R. Rattazzi, 2016 Large field excursions and approximate discrete symmetries from a clockwork axion https://doi.org/10.1103/PhysRevD.93.085007 Phys. Rev. D 93 085007 [1511.01827] · doi:10.1103/PhysRevD.93.085007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.