×

Gauge field and fermion production during axion inflation. (English) Zbl 1527.83122

Summary: We study the dual production of helical Abelian gauge fields and chiral fermions through the Chern-Simons (CS) coupling with a pseudo-scalar inflaton in the presence of a chiral anomaly. Through the CS term, the motion of the inflaton induces a tachyonic instability for one of the two helicities of the gauge field. We show that the resulting helical gauge field necessarily leads to the production of chiral fermions by deforming their Fermi sphere into discrete Landau levels. The population of the lowest Landau level leads to a chiral asymmetry as inferred from the chiral anomaly, while the higher levels are populated symmetrically through pair production. From the backreaction of the fermions on the gauge field production we derive a conservative but stringent upper bound on the magnitude of the gauge fields. Consequently, we find that the scalar perturbations sourced by these helical gauge fields, responsible for enhanced structure formation on small scales, get reduced significantly. We also discuss the fate of the primordial chiral asymmetry and of the helical gauge fields after inflation, and show that the instability in the chiral plasma tends to erase these primordial asymmetries. This result may impact scenarios where the baryon asymmetry of the Universe is connected to primordial magnetic fields.

MSC:

83F05 Relativistic cosmology

References:

[1] P. Adshead and M. Wyman, 2012 Chromo-natural inflation: natural inflation on a steep potential with classical non-Abelian gauge fields, https://doi.org/10.1103/PhysRevLett.108.261302 Phys. Rev. Lett.108 261302 [1202.2366] · doi:10.1103/PhysRevLett.108.261302
[2] M.S. Turner and L.M. Widrow, 1988 Gravitational production of scalar particles in inflationary universe models, https://doi.org/10.1103/PhysRevD.37.3428 Phys. Rev. D 37 3428 · doi:10.1103/PhysRevD.37.3428
[3] W.D. Garretson, G.B. Field and S.M. Carroll, 1992 Primordial magnetic fields from pseudo-Goldstone bosons, https://doi.org/10.1103/PhysRevD.46.5346 Phys. Rev. D 46 5346 [hep-ph/9209238] · doi:10.1103/PhysRevD.46.5346
[4] M.M. Anber and L. Sorbo, 2006 N-flationary magnetic fields J. Cosmol. Astropart. Phys.2006 10 018 [astro-ph/0606534]
[5] J.L. Cook and L. Sorbo, 2012 Particle production during inflation and gravitational waves detectable by ground-based interferometers, https://doi.org/10.1103/PhysRevD.86.069901 Phys. Rev. D 85 023534 [Erratum ibid D 86 (2012) 069901] [1109.0022] · doi:10.1103/PhysRevD.86.069901
[6] N. Barnaby, E. Pajer and M. Peloso, 2012 Gauge field production in axion inflation: consequences for monodromy, non-gaussianity in the CMB and gravitational waves at interferometers, https://doi.org/10.1103/PhysRevD.85.023525 Phys. Rev. D 85 023525 [1110.3327] · doi:10.1103/PhysRevD.85.023525
[7] N. Barnaby, R. Namba and M. Peloso, 2011 Phenomenology of a pseudo-scalar inflaton: naturally large non-gaussianity J. Cosmol. Astropart. Phys.2011 04 009 [1102.4333]
[8] M.M. Anber and L. Sorbo, 2012 Non-gaussianities and chiral gravitational waves in natural steep inflation, https://doi.org/10.1103/PhysRevD.85.123537 Phys. Rev. D 85 123537 [1203.5849] · doi:10.1103/PhysRevD.85.123537
[9] A. Linde, S. Mooij and E. Pajer, 2013 Gauge field production in supergravity inflation: local non-gaussianity and primordial black holes, https://doi.org/10.1103/PhysRevD.87.103506 Phys. Rev. D 87 103506 [1212.1693] · doi:10.1103/PhysRevD.87.103506
[10] P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, 2015 Gauge-preheating and the end of axion inflation J. Cosmol. Astropart. Phys.2015 12 034 [1502.06506]
[11] M.M. Anber and L. Sorbo, 2010 Naturally inflating on steep potentials through electromagnetic dissipation, https://doi.org/10.1103/PhysRevD.81.043534 Phys. Rev. D 81 043534 [0908.4089] · doi:10.1103/PhysRevD.81.043534
[12] A. Hook and G. Marques-Tavares, 2016 Relaxation from particle production J. High Energy Phys. JHEP12(2016)101 [1607.01786] · doi:10.1007/JHEP12(2016)101
[13] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Relaxed inflation, [1706.00438]
[14] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, 2018 Dynamics of relaxed inflation J. High Energy Phys. JHEP02(2018)084 [1706.03072] · Zbl 1387.83142 · doi:10.1007/JHEP02(2018)084
[15] N. Fonseca, E. Morgante and G. Servant, 2018 Higgs relaxation after inflation J. High Energy Phys. JHEP10(2018)020 [1805.04543] · Zbl 1402.83115 · doi:10.1007/JHEP10(2018)020
[16] M. Giovannini and M.E. Shaposhnikov, 1998 Primordial hypermagnetic fields and triangle anomaly, https://doi.org/10.1103/PhysRevD.57.2186 Phys. Rev. D 57 2186 [hep-ph/9710234] · doi:10.1103/PhysRevD.57.2186
[17] M.M. Anber and E. Sabancilar, 2015 Hypermagnetic fields and baryon asymmetry from pseudoscalar inflation, https://doi.org/10.1103/PhysRevD.92.101501 Phys. Rev. D 92 101501 [1507.00744] · doi:10.1103/PhysRevD.92.101501
[18] T. Fujita and K. Kamada, 2016 Large-scale magnetic fields can explain the baryon asymmetry of the Universe, https://doi.org/10.1103/PhysRevD.93.083520 Phys. Rev. D 93 083520 [1602.02109] · doi:10.1103/PhysRevD.93.083520
[19] K. Kamada and A.J. Long, 2016 Baryogenesis from decaying magnetic helicity, https://doi.org/10.1103/PhysRevD.94.063501 Phys. Rev. D 94 063501 [1606.08891] · doi:10.1103/PhysRevD.94.063501
[20] Y. Cado and E. Sabancilar, 2017 Asymmetric dark matter and baryogenesis from pseudoscalar inflation J. Cosmol. Astropart. Phys.2017 04 047 [1611.02293] · Zbl 1515.83317
[21] D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, 2017 Baryon asymmetry and gravitational waves from pseudoscalar inflation J. Cosmol. Astropart. Phys.2017 12 011 [1707.07943]
[22] A. Dolgov and K. Freese, 1995 Calculation of particle production by Nambu Goldstone bosons with application to inflation reheating and baryogenesis, https://doi.org/10.1103/PhysRevD.51.2693 Phys. Rev. D 51 2693 [hep-ph/9410346] · doi:10.1103/PhysRevD.51.2693
[23] A. Kusenko, K. Schmitz and T.T. Yanagida, 2015 Leptogenesis via axion oscillations after inflation, https://doi.org/10.1103/PhysRevLett.115.011302 Phys. Rev. Lett.115 011302 [1412.2043] · doi:10.1103/PhysRevLett.115.011302
[24] P. Adshead and E.I. Sfakianakis, 2016 Leptogenesis from left-handed neutrino production during axion inflation, https://doi.org/10.1103/PhysRevLett.116.091301 Phys. Rev. Lett.116 091301 [1508.00881] · doi:10.1103/PhysRevLett.116.091301
[25] P. Adshead and E.I. Sfakianakis, 2015 Fermion production during and after axion inflation J. Cosmol. Astropart. Phys.2015 11 021 [1508.00891]
[26] A. De Simone and T. Kobayashi, 2016 Cosmological aspects of spontaneous baryogenesis J. Cosmol. Astropart. Phys.2016 08 052 [1605.00670]
[27] M.M. Anber and E. Sabancilar, 2017 Chiral gravitational waves from chiral fermions, https://doi.org/10.1103/PhysRevD.96.023501 Phys. Rev. D 96 023501 [1607.03916] · doi:10.1103/PhysRevD.96.023501
[28] P. Adshead et al., 2018 Phenomenology of fermion production during axion inflation J. Cosmol. Astropart. Phys.2018 06 020 [1803.04501] · Zbl 1527.83100
[29] S.L. Adler, 1969 Axial vector vertex in spinor electrodynamics, https://doi.org/10.1103/PhysRev.177.2426 Phys. Rev.1772426 · doi:10.1103/PhysRev.177.2426
[30] J.S. Bell and R. Jackiw, 1969 A PCAC puzzle: \(π^0\) → γ γ in the σ model, https://doi.org/10.1007/BF02823296 Nuovo Cim. A 60 47 · doi:10.1007/BF02823296
[31] M.E. Peskin and D.V. Schroeder, 1995 An introduction to quantum field theory, Addison-Wesley, Reading U.S.A.
[32] H.B. Nielsen and M. Ninomiya, 1983 Adler-Bell-Jackiw anomaly and weyl fermions in crystal Phys. Lett. B 130 389 · doi:10.1016/0370-2693(83)91529-0
[33] W. Heisenberg and H. Euler, 1936 Folgerungen aus der Diracschen Theorie des Positrons, https://doi.org/10.1007/BF01343663 Z. Phys.98 714 [https://arxiv.org/abs/physics/0605038] · JFM 62.1002.03 · doi:10.1007/BF01343663
[34] J.S. Schwinger, 1951 On gauge invariance and vacuum polarization, https://doi.org/10.1103/PhysRev.82.664 Phys. Rev.82664 · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[35] R.A. Abramchuk and M.A. Zubkov, 2016 Schwinger pair creation in Dirac semimetals in the presence of external magnetic and electric fields, https://doi.org/10.1103/PhysRevD.94.116012 Phys. Rev. D 94 116012 [1605.02379] · doi:10.1103/PhysRevD.94.116012
[36] E. Bavarsad, S.P. Kim, C. Stahl and S.-S. Xue, 2018 Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, https://doi.org/10.1103/PhysRevD.97.025017 Phys. Rev. D 97 025017 [1707.03975] · doi:10.1103/PhysRevD.97.025017
[37] T. Kobayashi and N. Afshordi, 2014 Schwinger effect in 4 D de Sitter space and constraints on magnetogenesis in the early universe J. High Energy Phys. JHEP10(2014)166 [1408.4141] · Zbl 1333.83272 · doi:10.1007/JHEP10(2014)166
[38] T. Hayashinaka, T. Fujita and J. Yokoyama, 2016 Fermionic Schwinger effect and induced current in de Sitter space J. Cosmol. Astropart. Phys.2016 07 010 [1603.04165]
[39] K. Fukushima, D.E. Kharzeev and H.J. Warringa, 2008 The chiral magnetic effect, https://doi.org/10.1103/PhysRevD.78.074033 Phys. Rev. D 78 074033 [0808.3382] · doi:10.1103/PhysRevD.78.074033
[40] Y. Akamatsu and N. Yamamoto, 2013 Chiral plasma instabilities, https://doi.org/10.1103/PhysRevLett.111.052002 Phys. Rev. Lett.111 052002 [1302.2125] · doi:10.1103/PhysRevLett.111.052002
[41] L.E. Parker and D. Toms, 2009 Quantum field theory in curved spacetime, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. · Zbl 1180.81001 · doi:10.1017/CBO9780511813924
[42] K. Fujikawa, 1979 Path integral measure for gauge invariant fermion theories, https://doi.org/10.1103/PhysRevLett.42.1195 Phys. Rev. Lett.42 1195 · doi:10.1103/PhysRevLett.42.1195
[43] K. Fujikawa, 1980 Path integral for gauge theories with fermions, https://doi.org/10.1103/PhysRevD.21.2848 Phys. Rev. D 21 2848 [Erratum ibid D 22 (1980) 1499] · doi:10.1103/PhysRevD.21.2848
[44] M.S. Turner and L.M. Widrow, 1988 Inflation produced, large scale magnetic fields, https://doi.org/10.1103/PhysRevD.37.2743 Phys. Rev. D 37 2743 · doi:10.1103/PhysRevD.37.2743
[45] V. Kasper, F. Hebenstreit and J. Berges, 2014 Fermion production from real-time lattice gauge theory in the classical-statistical regime, https://doi.org/10.1103/PhysRevD.90.025016 Phys. Rev. D 90 025016 [1403.4849] · doi:10.1103/PhysRevD.90.025016
[46] K. Fukushima, 2015 Simulating net particle production and chiral magnetic current in a CP-odd domain, https://doi.org/10.1103/PhysRevD.92.054009 Phys. Rev. D 92 054009 [1501.01940] · doi:10.1103/PhysRevD.92.054009
[47] N. Mueller, F. Hebenstreit and J. Berges, 2016 Anomaly-induced dynamical refringence in strong-field QED, https://doi.org/10.1103/PhysRevLett.117.061601 Phys. Rev. Lett.117 061601 [1605.01413] · doi:10.1103/PhysRevLett.117.061601
[48] S.L. Adler and W.A. Bardeen, 1969 Absence of higher order corrections in the anomalous axial vector divergence equation, https://doi.org/10.1103/PhysRev.182.1517 Phys. Rev.1821517 · doi:10.1103/PhysRev.182.1517
[49] T.D. Cohen and D.A. McGady, 2008 The Schwinger mechanism revisited, https://doi.org/10.1103/PhysRevD.78.036008 Phys. Rev. D 78 036008 [0807.1117] · doi:10.1103/PhysRevD.78.036008
[50] A.A. Starobinsky and J. Yokoyama, 1994 Equilibrium state of a selfinteracting scalar field in the de Sitter background, https://doi.org/10.1103/PhysRevD.50.6357 Phys. Rev. D 50 6357 [astro-ph/9407016] · doi:10.1103/PhysRevD.50.6357
[51] G. Baym and H. Heiselberg, 1997 The electrical conductivity in the early universe, https://doi.org/10.1103/PhysRevD.56.5254 Phys. Rev. D 56 5254 [astro-ph/9704214] · doi:10.1103/PhysRevD.56.5254
[52] P.B. Arnold, G.D. Moore and L.G. Yaffe, 2000 Transport coefficients in high temperature gauge theories. 1. Leading log results J. High Energy Phys. JHEP11(2000)001 [hep-ph/0010177]
[53] L. D. Landau and I. Pomeranchuk, 1953 Limits of applicability of the theory of Bremsstrahlung electrons and pair production at high-energies Dokl. Akad. Nauk Ser. Fiz.92 535
[54] A.B. Migdal, 1956 Bremsstrahlung and pair production in condensed media at high-energies, https://doi.org/10.1103/PhysRev.103.1811 Phys. Rev.103 1811 · Zbl 0073.23102 · doi:10.1103/PhysRev.103.1811
[55] M. Gyulassy and X.-n. Wang, 1994 Multiple collisions and induced gluon Bremsstrahlung in QCD, https://doi.org/10.1016/0550-3213(94)90079-5 Nucl. Phys. B 420 583 [nucl-th/9306003] · doi:10.1016/0550-3213(94)90079-5
[56] P.B. Arnold, G.D. Moore and L.G. Yaffe, 2001 Photon emission from ultrarelativistic plasmas J. High Energy Phys. JHEP11(2001)057 [hep-ph/0109064]
[57] P.B. Arnold, G.D. Moore and L.G. Yaffe, 2002 Photon and gluon emission in relativistic plasmas J. High Energy Phys. JHEP06(2002)030 [hep-ph/0204343]
[58] A. Kurkela and G.D. Moore, 2011 Thermalization in weakly coupled nonabelian plasmas J. High Energy Phys. JHEP12(2011)044 [1107.5050] · Zbl 1306.81353 · doi:10.1007/JHEP12(2011)044
[59] K. Harigaya and K. Mukaida, 2014 Thermalization after/during reheating J. High Energy Phys. JHEP05(2014)006 [1312.3097] · doi:10.1007/JHEP05(2014)006
[60] K. Mukaida and M. Yamada, 2016 Thermalization process after inflation and effective potential of scalar field J. Cosmol. Astropart. Phys.2016 02 003 [1506.07661]
[61] J. Ellis et al., 2016 Post-inflationary gravitino production revisited J. Cosmol. Astropart. Phys.2016 03 008 [1512.05701]
[62] R.Z. Ferreira and A. Notari, 2017 Thermalized axion inflation J. Cosmol. Astropart. Phys.2017 09 007 [1706.00373]
[63] N. Barnaby and M. Peloso, 2011 Large non-gaussianity in axion inflation, https://doi.org/10.1103/PhysRevLett.106.181301 Phys. Rev. Lett.106 181301 [1011.1500] · doi:10.1103/PhysRevLett.106.181301
[64] P.D. Meerburg and E. Pajer, 2013 Observational constraints on gauge field production in axion inflation J. Cosmol. Astropart. Phys.2013 02 017 [1203.6076]
[65] J. García-Bellido, M. Peloso and C. Unal, 2016 Gravitational waves at interferometer scales and primordial black holes in axion inflation J. Cosmol. Astropart. Phys.2016 12 031 [1610.03763]
[66] V. Domcke, F. Muia, M. Pieroni and L.T. Witkowski, 2017 PBH dark matter from axion inflation J. Cosmol. Astropart. Phys.2017 07 048 [1704.03464] · Zbl 1515.83335
[67] V. Domcke, M. Pieroni and P. Binétruy, 2016 Primordial gravitational waves for universality classes of pseudoscalar inflation J. Cosmol. Astropart. Phys.2016 06 031 [1603.01287]
[68] N. Bartolo et al., 2016 Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves J. Cosmol. Astropart. Phys.2016 12 026 [1610.06481]
[69] M. Peloso, L. Sorbo and C. Unal, 2016 Rolling axions during inflation: perturbativity and signatures J. Cosmol. Astropart. Phys.2016 09 001 [1606.00459]
[70] R.Z. Ferreira, J. Ganc, J. Noreña and M.S. Sloth, 2016 On the validity of the perturbative description of axions during inflation J. Cosmol. Astropart. Phys.2016 04 039 [Erratum ibid 1610 (2016) E01] [1512.06116]
[71] LISA collaboration, H. Audley et al., Laser interferometer space antenna, [1702.00786]
[72] S. H.-S. Alexander, M.E. Peskin and M.M. Sheikh-Jabbari, 2006 Leptogenesis from gravity waves in models of inflation, https://doi.org/10.1103/PhysRevLett.96.081301 Phys. Rev. Lett.96 081301 [hep-th/0403069] · doi:10.1103/PhysRevLett.96.081301
[73] P. Adshead, A.J. Long and E.I. Sfakianakis, 2018 Gravitational leptogenesis, reheating and models of neutrino mass, https://doi.org/10.1103/PhysRevD.97.043511 Phys. Rev. D 97 043511 [1711.04800] · doi:10.1103/PhysRevD.97.043511
[74] A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, 2012 Long-range magnetic fields in the ground state of the standard model plasma, https://doi.org/10.1103/PhysRevLett.109.111602 Phys. Rev. Lett.109 111602 [1204.3604] · doi:10.1103/PhysRevLett.109.111602
[75] K. Kamada and A.J. Long, 2016 Evolution of the baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field, https://doi.org/10.1103/PhysRevD.94.123509 Phys. Rev. D 94 123509 [1610.03074] · doi:10.1103/PhysRevD.94.123509
[76] K. Kamada, 2018 Return of grand unified theory baryogenesis: source of helical hypermagnetic fields for the baryon asymmetry of the universe, https://doi.org/10.1103/PhysRevD.97.103506 Phys. Rev. D 97 103506 [1802.03055] · doi:10.1103/PhysRevD.97.103506
[77] D.G. Figueroa and M. Shaposhnikov, 2018 Anomalous non-conservation of fermion/chiral number in Abelian gauge theories at finite temperature J. High Energy Phys. JHEP04(2018)026 [1707.09967] · Zbl 1390.83450 · doi:10.1007/JHEP04(2018)026
[78] J. Schober et al., 2018 Laminar and turbulent dynamos in chiral magnetohydrodynamics. II. Simulations, https://doi.org/10.3847/1538-4357/aaba75 Astrophys. J.858 124 [1711.09733] · doi:10.3847/1538-4357/aaba75
[79] J. Schober, A. Brandenburg, I. Rogachevskii and N. Kleeorin, Energetics of turbulence generated by chiral MHD dynamos, [1803.06350]
[80] A. Boyarsky, J. Fröhlich and O. Ruchayskiy, 2012 Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe, https://doi.org/10.1103/PhysRevLett.108.031301 Phys. Rev. Lett.108 031301 [1109.3350] · doi:10.1103/PhysRevLett.108.031301
[81] N.K. Nielsen and P. Olesen, 1978 An unstable Yang-Mills field mode, https://doi.org/10.1016/0550-3213(78)90377-2 Nucl. Phys. B 144 376 · doi:10.1016/0550-3213(78)90377-2
[82] N. Tanji and K. Itakura, 2012 Schwinger mechanism enhanced by the Nielsen-Olesen instability, https://doi.org/10.1016/j.physletb.2012.05.043 Phys. Lett. B 713 117 [1111.6772] · doi:10.1016/j.physletb.2012.05.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.