×

Axion inflation with an \(SU(2)\) gauge field: detectable chiral gravity waves. (English) Zbl 1390.83050


MSC:

83C35 Gravitational waves

References:

[1] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev.D 23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[2] K. Sato, First order phase transition of a vacuum and expansion of the universe, Mon. Not. Roy. Astron. Soc.195 (1981) 467 [INSPIRE]. · doi:10.1093/mnras/195.3.467
[3] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett.B 108 (1982) 389 [INSPIRE]. · doi:10.1016/0370-2693(82)91219-9
[4] A.D. Linde, The inflationary universe, Rept. Prog. Phys.47 (1984) 925 [INSPIRE]. · doi:10.1088/0034-4885/47/8/002
[5] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
[6] POLARBEAR collaboration, P.A.R. Ade et al., A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR, Astrophys. J.794 (2014) 171 [arXiv:1403.2369] [INSPIRE].
[7] BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett.112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
[8] BICEP2 and Keck Array collaborations, P.A.R. Ade et al., Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band, Phys. Rev. Lett.116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
[9] E.D. Kovetz and M. Kamionkowski, Strategy to minimize dust foregrounds in B-mode searches, Phys. Rev.D 91 (2015) 081303 [arXiv:1502.00625] [INSPIRE].
[10] M. Kamionkowski and E.D. Kovetz, The quest for B modes from inflationary gravitational waves, arXiv:1510.06042 [INSPIRE].
[11] P. Creminelli, D.L. López Nacir, M. Simonović, G. Trevisan and M. Zaldarriaga, Detecting primordial B-modes after Planck, JCAP11 (2015) 031 [arXiv:1502.01983] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/031
[12] D.J. Schwarz, C.J. Copi, D. Huterer and G.D. Starkman, CMB anomalies after Planck, arXiv:1510.07929 [INSPIRE].
[13] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett.78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
[14] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996) [INSPIRE]. · Zbl 0885.00020
[15] P. Svrček and E. Witten, Axions in string theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE]. · doi:10.1088/1126-6708/2006/06/051
[16] T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP06 (2003) 001 [hep-th/0303252] [INSPIRE]. · doi:10.1088/1475-7516/2003/06/001
[17] E. Pajer and M. Peloso, A review of axion inflation in the era of Planck, Class. Quant. Grav.30 (2013) 214002 [arXiv:1305.3557] [INSPIRE]. · Zbl 1277.83008 · doi:10.1088/0264-9381/30/21/214002
[18] C. Long, L. McAllister and J. Stout, Systematics of axion inflation in Calabi-Yau hypersurfaces, arXiv:1603.01259 [INSPIRE]. · Zbl 1377.85019
[19] K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett.65 (1990) 3233 [INSPIRE]. · doi:10.1103/PhysRevLett.65.3233
[20] K. Freese and W.H. Kinney, On natural inflation, Phys. Rev.D 70 (2004) 083512 [hep-ph/0404012] [INSPIRE].
[21] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
[22] R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP06 (2010) 009 [arXiv:0907.2916] [INSPIRE]. · doi:10.1088/1475-7516/2010/06/009
[23] L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP09 (2014) 123 [arXiv:1405.3652] [INSPIRE]. · doi:10.1007/JHEP09(2014)123
[24] R. Easther and R. Flauger, Planck constraints on monodromy inflation, JCAP02 (2014) 037 [arXiv:1308.3736] [INSPIRE]. · doi:10.1088/1475-7516/2014/02/037
[25] R. Flauger, L. McAllister, E. Silverstein and A. Westphal, Drifting oscillations in axion monodromy, arXiv:1412.1814 [INSPIRE]. · Zbl 1515.83347
[26] L. Sorbo, Parity violation in the cosmic microwave background from a pseudoscalar inflaton, JCAP06 (2011) 003 [arXiv:1101.1525] [INSPIRE]. · doi:10.1088/1475-7516/2011/06/003
[27] N. Barnaby and M. Peloso, Large non-Gaussianity in axion inflation, Phys. Rev. Lett.106 (2011) 181301 [arXiv:1011.1500] [INSPIRE]. · doi:10.1103/PhysRevLett.106.181301
[28] N. Barnaby, R. Namba and M. Peloso, Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity, JCAP04 (2011) 009 [arXiv:1102.4333] [INSPIRE]. · doi:10.1088/1475-7516/2011/04/009
[29] N. Barnaby, E. Pajer and M. Peloso, Gauge field production in axion inflation: consequences for monodromy, non-Gaussianity in the CMB and gravitational waves at interferometers, Phys. Rev.D 85 (2012) 023525 [arXiv:1110.3327] [INSPIRE].
[30] R. Namba, M. Peloso, M. Shiraishi, L. Sorbo and C. Unal, Scale-dependent gravitational waves from a rolling axion, JCAP01 (2016) 041 [arXiv:1509.07521] [INSPIRE]. · doi:10.1088/1475-7516/2016/01/041
[31] A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: inflation from non-Abelian gauge fields, Phys. Lett.B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE]. · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[32] A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian gauge field inflation, Phys. Rev.D 84 (2011) 043515 [arXiv:1102.1932] [INSPIRE].
[33] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept.528 (2013) 161 [arXiv:1212.2921] [INSPIRE]. · Zbl 1297.83055 · doi:10.1016/j.physrep.2013.03.003
[34] P. Adshead and M. Wyman, Chromo-natural inflation: natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett.108 (2012) 261302 [arXiv:1202.2366] [INSPIRE]. · doi:10.1103/PhysRevLett.108.261302
[35] P. Adshead and M. Wyman, Gauge-flation trajectories in chromo-natural inflation, Phys. Rev.D 86 (2012) 043530 [arXiv:1203.2264] [INSPIRE].
[36] E. Martinec, P. Adshead and M. Wyman, Chern-Simons EM-flation, JHEP02 (2013) 027 [arXiv:1206.2889] [INSPIRE]. · Zbl 1342.83402 · doi:10.1007/JHEP02(2013)027
[37] A. Maleknejad and M. Zarei, Slow-roll trajectories in chromo-natural and gauge-flation models: an exhaustive analysis, Phys. Rev.D 88 (2013) 043509 [arXiv:1212.6760] [INSPIRE].
[38] A. Maleknejad and E. Erfani, Chromo-natural model in anisotropic background, JCAP03 (2014) 016 [arXiv:1311.3361] [INSPIRE]. · doi:10.1088/1475-7516/2014/03/016
[39] P. Adshead, E. Martinec and M. Wyman, Gauge fields and inflation: chiral gravitational waves, fluctuations and the Lyth bound, Phys. Rev.D 88 (2013) 021302 [arXiv:1301.2598] [INSPIRE].
[40] E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev.D 87 (2013) 103501 [arXiv:1212.5184] [INSPIRE].
[41] P. Adshead, E. Martinec and M. Wyman, Perturbations in chromo-natural inflation, JHEP09 (2013) 087 [arXiv:1305.2930] [INSPIRE]. · Zbl 1342.83510 · doi:10.1007/JHEP09(2013)087
[42] CLEO collaboration, I. Obata and J. Soda, Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation, Phys. Rev.D 93 (2016) 123502 [arXiv:1602.06024] [INSPIRE].
[43] A. Maleknejad, Chiral gravity waves and leptogenesis in inflationary models with non-Abelian gauge fields, Phys. Rev.D 90 (2014) 023542 [arXiv:1401.7628] [INSPIRE].
[44] D. Baumann and L. McAllister, Inflation and string theory, Cambridge University Press, Cambridge U.K. (2015) [arXiv:1404.2601] [INSPIRE]. · Zbl 1339.83003 · doi:10.1017/CBO9781316105733
[45] S.H.-S. Alexander, M.E. Peskin and M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett.96 (2006) 081301 [hep-th/0403069] [INSPIRE]. · doi:10.1103/PhysRevLett.96.081301
[46] A. Maleknejad, Gravitational leptogenesis in the axion inflation with an SU(2) gauge field, arXiv:1604.06520 [INSPIRE]. · Zbl 1390.83050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.