×

A new mechanism to enhance primordial tensor fluctuations in single field inflation. (English) Zbl 1536.83195

Summary: We discuss a new mechanism to enhance the spectrum of primordial tensor fluctuations in single field inflationary scenarios. The enhancement relies on a transitory non-attractor inflationary phase, which amplifies the would-be decaying tensor mode, and gives rise to a growth of tensor fluctuations at superhorizon scales. We show that the enhancement produced during this phase can be neatly treated via a tensor duality between an attractor and non-attractor phase, which we introduce. We illustrate the mechanism and duality in a kinetically driven scenario of inflation, with non-minimal couplings between the scalar and the metric.

MSC:

83F05 Relativistic cosmology
83C35 Gravitational waves

References:

[1] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, 1992 Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, https://doi.org/10.1016/0370-1573(92)90044-Z Phys. Rept.215 203 · doi:10.1016/0370-1573(92)90044-Z
[2] S. Inoue and J. Yokoyama, 2002 Curvature perturbation at the local extremum of the inflaton’s potential https://doi.org/10.1016/S0370-2693(01)01369-7 Phys. Lett. B 524 15 [hep-ph/0104083] · Zbl 0981.83062 · doi:10.1016/S0370-2693(01)01369-7
[3] A.D. Linde, 2001 Fast roll inflation J. High Energy Phys. JHEP11(2001)052 [hep-th/0110195]
[4] W.H. Kinney, 2005 Horizon crossing and inflation with large eta, https://doi.org/10.1103/PhysRevD.72.023515 Phys. Rev. D 72 023515 [gr-qc/0503017] · doi:10.1103/PhysRevD.72.023515
[5] J. Martin, H. Motohashi and T. Suyama, 2013 Ultra slow-roll inflation and the non-Gaussianity consistency relation https://doi.org/10.1103/PhysRevD.87.023514 Phys. Rev. D 87 023514 [1211.0083] · doi:10.1103/PhysRevD.87.023514
[6] H. Motohashi, A.A. Starobinsky and J. Yokoyama, 2015 Inflation with a constant rate of roll J. Cosmol. Astropart. Phys.2015 09 018 [1411.5021]
[7] Z. Yi and Y. Gong, 2018 On the constant-roll inflation J. Cosmol. Astropart. Phys.2018 03 052 [1712.07478] · Zbl 1530.83063
[8] K. Dimopoulos, 2017 Ultra slow-roll inflation demystified, https://doi.org/10.1016/j.physletb.2017.10.066 Phys. Lett. B 775 262 [1707.05644] · doi:10.1016/j.physletb.2017.10.066
[9] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, 2018 The attractive behaviour of ultra-slow-roll inflation J. Cosmol. Astropart. Phys.2018 08 048 [1806.09553]
[10] A.A. Starobinsky, 1992 Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential &emphJETP; Lett. 55 489
[11] A.A. Starobinsky, 1992 Pisma Zh. Eksp. Teor. Fiz.55 477
[12] D. Wands, 1999 Duality invariance of cosmological perturbation spectra, https://doi.org/10.1103/PhysRevD.60.023507 Phys. Rev. D 60 023507 [gr-qc/9809062] · doi:10.1103/PhysRevD.60.023507
[13] J. García-Bellido, 2017 Massive primordial black holes as dark matter and their detection with gravitational waves https://doi.org/10.1088/1742-6596/840/1/012032 J. Phys. Conf. Ser.840 012032 [1702.08275] · doi:10.1088/1742-6596/840/1/012032
[14] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, 2018 Primordial black holes — perspectives in gravitational wave astronomy, https://doi.org/10.1088/1361-6382/aaa7b4 Class. Quant. Grav.35 063001 [1801.05235] · Zbl 1386.83001 · doi:10.1088/1361-6382/aaa7b4
[15] B. Carr, F. Kuhnel and M. Sandstad, 2016 Primordial black holes as dark matter, https://doi.org/10.1103/PhysRevD.94.083504 Phys. Rev. D 94 083504 [1607.06077] · doi:10.1103/PhysRevD.94.083504
[16] J. García-Bellido and E. Ruiz Morales, 2017 Primordial black holes from single field models of inflation, https://doi.org/10.1016/j.dark.2017.09.007 Phys. Dark Univ.18 47 [1702.03901] · doi:10.1016/j.dark.2017.09.007
[17] C. Germani and T. Prokopec, 2017 On primordial black holes from an inflection point, https://doi.org/10.1016/j.dark.2017.09.001 Phys. Dark Univ.18 6 [1706.04226] · doi:10.1016/j.dark.2017.09.001
[18] H. Motohashi and W. Hu, 2017 Primordial black holes and slow-roll violation, https://doi.org/10.1103/PhysRevD.96.063503 Phys. Rev. D 96 063503 [1706.06784] · doi:10.1103/PhysRevD.96.063503
[19] G. Ballesteros and M. Taoso, 2018 Primordial black hole dark matter from single field inflation, https://doi.org/10.1103/PhysRevD.97.023501 Phys. Rev. D 97 023501 [1709.05565] · doi:10.1103/PhysRevD.97.023501
[20] J.M. Ezquiaga, J. García-Bellido and E. Ruiz Morales, 2018 Primordial black hole production in critical Higgs inflation, https://doi.org/10.1016/j.physletb.2017.11.039 Phys. Lett. B 776 345 [1705.04861] · doi:10.1016/j.physletb.2017.11.039
[21] M. Cicoli, V.A. Diaz and F.G. Pedro, 2018 Primordial black holes from string inflation J. Cosmol. Astropart. Phys.2018 06 034 [1803.02837]
[22] O. Özsoy, S. Parameswaran, G. Tasinato and I. Zavala, 2018 Mechanisms for primordial black hole production in string theory J. Cosmol. Astropart. Phys.2018 07 005 [1803.07626] · Zbl 1527.83061
[23] M. Biagetti, G. Franciolini, A. Kehagias and A. Riotto, 2018 Primordial black holes from inflation and quantum diffusion J. Cosmol. Astropart. Phys.2018 07 032 [1804.07124] · Zbl 1527.83047
[24] R. Saito, J. Yokoyama and R. Nagata, 2008 Single-field inflation, anomalous enhancement of superhorizon fluctuations and non-Gaussianity in primordial black hole formation J. Cosmol. Astropart. Phys.2008 06 024 [0804.3470]
[25] K. Kannike, L. Marzola, M. Raidal and H. Veermäe, 2017 Single field double inflation and primordial black holes J. Cosmol. Astropart. Phys.2017 09 020 [1705.06225] · Zbl 1515.83156
[26] S. Chongchitnan and G. Efstathiou, 2006 Prospects for direct detection of primordial gravitational waves, https://doi.org/10.1103/PhysRevD.73.083511 Phys. Rev. D 73 083511 [astro-ph/0602594] · doi:10.1103/PhysRevD.73.083511
[27] M. Kamionkowski and E.D. Kovetz, 2016 The quest for B modes from inflationary gravitational waves, https://doi.org/10.1146/annurev-astro-081915-023433 Ann. Rev. Astron. Astrophys.54 227 [1510.06042] · doi:10.1146/annurev-astro-081915-023433
[28] M. Maggiore, 2007 Gravitational waves. Volume 1: theory and experiments, Oxford Master Series in Physics, https://doi.org/10.1093/acprof:oso/9780198570745.001.0001Oxford University Press, Oxford, U.K.,
[29] M. Maggiore, 2018 Gravitational waves. Volume 2: astrophysics and cosmology, https://doi.org/10.1093/oso/9780198570899.001.0001Oxford University Press, Oxford, U.K.,
[30] J.L. Cook and L. Sorbo, 2012 Particle production during inflation and gravitational waves detectable by ground-based interferometers, https://doi.org/10.1103/PhysRevD.85.023534 Phys. Rev. D 85 023534 [https://doi.org/10.1103/PhysRevD.86.069901Erratum ibid D 86 (2012) 069901] [1109.0022] · doi:10.1103/PhysRevD.85.023534
[31] L. Senatore, E. Silverstein and M. Zaldarriaga, 2014 New sources of gravitational waves during inflation J. Cosmol. Astropart. Phys.2014 08 016 [1109.0542]
[32] D. Carney, W. Fischler, E.D. Kovetz, D. Lorshbough and S. Paban, 2012 Rapid field excursions and the inflationary tensor spectrum J. High Energy Phys. JHEP11(2012)042 [1209.3848]
[33] M. Biagetti, M. Fasiello and A. Riotto, 2013 Enhancing inflationary tensor modes through spectator fields, https://doi.org/10.1103/PhysRevD.88.103518 Phys. Rev. D 88 103518 [1305.7241] · doi:10.1103/PhysRevD.88.103518
[34] M. Biagetti, E. Dimastrogiovanni, M. Fasiello and M. Peloso, 2015 Gravitational waves and scalar perturbations from spectator fields J. Cosmol. Astropart. Phys.2015 04 011 [1411.3029]
[35] C. Goolsby-Cole and L. Sorbo, 2017 Nonperturbative production of massless scalars during inflation and generation of gravitational waves J. Cosmol. Astropart. Phys.2017 08 005 [1705.03755] · Zbl 1515.83067
[36] L. Sorbo, 2011 Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton J. Cosmol. Astropart. Phys.2011 06 003 [1101.1525]
[37] M.M. Anber and L. Sorbo, 2012 Non-Gaussianities and chiral gravitational waves in natural steep inflation, https://doi.org/10.1103/PhysRevD.85.123537 Phys. Rev. D 85 123537 [1203.5849] · doi:10.1103/PhysRevD.85.123537
[38] N. Barnaby and M. Peloso, 2011 Large non-Gaussianity in axion inflation, https://doi.org/10.1103/PhysRevLett.106.181301 Phys. Rev. Lett.106 181301 [1011.1500] · doi:10.1103/PhysRevLett.106.181301
[39] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou, 2012 Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, https://doi.org/10.1103/PhysRevD.86.103508 Phys. Rev. D 86 103508 [1206.6117] · doi:10.1103/PhysRevD.86.103508
[40] O. Özsoy, 2018 On synthetic gravitational waves from multi-field inflation J. Cosmol. Astropart. Phys.2018 04 062 [1712.01991] · Zbl 1536.83196
[41] A. Maleknejad and M.M. Sheikh-Jabbari, 2013 Gauge-flation: inflation from non-Abelian gauge fields, https://doi.org/10.1016/j.physletb.2013.05.001 Phys. Lett. B 723 224 [1102.1513] · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[42] E. Dimastrogiovanni and M. Peloso, 2013 Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, https://doi.org/10.1103/PhysRevD.87.103501 Phys. Rev. D 87 103501 [1212.5184] · doi:10.1103/PhysRevD.87.103501
[43] P. Adshead, E. Martinec and M. Wyman, 2013 Gauge fields and inflation: chiral gravitational waves, fluctuations and the Lyth bound, https://doi.org/10.1103/PhysRevD.88.021302 Phys. Rev. D 88 021302 [1301.2598] · doi:10.1103/PhysRevD.88.021302
[44] P. Adshead, E. Martinec and M. Wyman, 2013 Perturbations in chromo-natural inflation J. High Energy Phys. JHEP09(2013)087 [1305.2930] · Zbl 1342.83510
[45] I. Obata, T. Miura and J. Soda, 2015 Chromo-natural inflation in the axiverse, https://doi.org/10.1103/PhysRevD.92.063516 Phys. Rev. D 92 063516 [https://doi.org/10.1103/PhysRevD.95.109902Addendum ibid D 95 (2017) 109902] [1412.7620] · doi:10.1103/PhysRevD.92.063516
[46] A. Maleknejad, 2016 Axion inflation with an SU(2) gauge field: detectable chiral gravity waves J. High Energy Phys. JHEP07(2016)104 [1604.03327] · Zbl 1390.83050
[47] E. Dimastrogiovanni, M. Fasiello and T. Fujita, 2017 Primordial gravitational waves from axion-gauge fields dynamics J. Cosmol. Astropart. Phys.2017 01 019 [1608.04216]
[48] A. Agrawal, T. Fujita and E. Komatsu, 2018 Large tensor non-Gaussianity from axion-gauge field dynamics, https://doi.org/10.1103/PhysRevD.97.103526 Phys. Rev. D 97 103526 [1707.03023] · doi:10.1103/PhysRevD.97.103526
[49] P. Adshead and E.I. Sfakianakis, 2017 Higgsed gauge-flation J. High Energy Phys. JHEP08(2017)130 [1705.03024] · Zbl 1381.85007
[50] R.R. Caldwell and C. Devulder, 2018 Axion gauge field inflation and gravitational leptogenesis: a lower bound on B modes from the matter-antimatter asymmetry of the universe https://doi.org/10.1103/PhysRevD.97.023532 Phys. Rev. D 97 023532 [1706.03765] · doi:10.1103/PhysRevD.97.023532
[51] A. Agrawal, T. Fujita and E. Komatsu, 2018 Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search J. Cosmol. Astropart. Phys.2018 06 027 [1802.09284] · Zbl 1527.83101
[52] J.R. Espinosa, D. Racco and A. Riotto, 2018 A cosmological signature of the SM Higgs instability: gravitational waves J. Cosmol. Astropart. Phys.2018 09 012 [1804.07732] · Zbl 1527.83025
[53] S. Endlich, A. Nicolis and J. Wang, 2013 Solid inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[54] N. Bartolo, D. Cannone, A. Ricciardone and G. Tasinato, 2016 Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation J. Cosmol. Astropart. Phys.2016 03 044 [1511.07414]
[55] A. Ricciardone and G. Tasinato, 2017 Primordial gravitational waves in supersolid inflation, https://doi.org/10.1103/PhysRevD.96.023508 Phys. Rev. D 96 023508 [1611.04516] · doi:10.1103/PhysRevD.96.023508
[56] A. Ricciardone and G. Tasinato, 2018 Anisotropic tensor power spectrum at interferometer scales induced by tensor squeezed non-Gaussianity J. Cosmol. Astropart. Phys.2018 02 011 [1711.02635] · Zbl 1527.83165
[57] G. Domènech, T. Hiramatsu, C. Lin, M. Sasaki, M. Shiraishi and Y. Wang, 2017 CMB scale dependent non-Gaussianity from massive gravity during inflation J. Cosmol. Astropart. Phys.2017 05 034 [1701.05554] · Zbl 1515.83219
[58] G. Ballesteros, D. Comelli and L. Pilo, 2016 Massive and modified gravity as self-gravitating media, https://doi.org/10.1103/PhysRevD.94.124023 Phys. Rev. D 94 124023 [1603.02956] · doi:10.1103/PhysRevD.94.124023
[59] D. Cannone, J.-O. Gong and G. Tasinato, 2015 Breaking discrete symmetries in the effective field theory of inflation J. Cosmol. Astropart. Phys.2015 08 003 [1505.05773]
[60] C. Lin and L.Z. Labun, 2016 Effective field theory of broken spatial diffeomorphisms J. High Energy Phys. JHEP03(2016)128 [1501.07160] · Zbl 1388.83024
[61] D. Cannone, G. Tasinato and D. Wands, 2015 Generalised tensor fluctuations and inflation J. Cosmol. Astropart. Phys.2015 01 029 [1409.6568]
[62] M. Akhshik, 2015 Clustering fossils in solid inflation J. Cosmol. Astropart. Phys.2015 05 043 [1409.3004]
[63] C. Lin and M. Sasaki, 2016 Resonant primordial gravitational waves amplification, https://doi.org/10.1016/j.physletb.2015.11.021 Phys. Lett. B 752 84 [1504.01373] · doi:10.1016/j.physletb.2015.11.021
[64] M. Biagetti, E. Dimastrogiovanni and M. Fasiello, 2017 Possible signatures of the inflationary particle content: spin-2 fields J. Cosmol. Astropart. Phys.2017 10 038 [1708.01587] · Zbl 1515.83298
[65] E. Dimastrogiovanni, M. Fasiello and G. Tasinato, 2018 Probing the inflationary particle content: extra spin-2 field J. Cosmol. Astropart. Phys.2018 08 016 [1806.00850] · Zbl 1536.83167
[66] T. Fujita, S. Kuroyanagi, S. Mizuno and S. Mukohyama, Blue-tilted primordial gravitational waves from massive gravity, [1808.02381]
[67] N. Bartolo et al., 2016 Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves J. Cosmol. Astropart. Phys.2016 12 026 [1610.06481]
[68] O. Seto, J. Yokoyama and H. Kodama, 2000 What happens when the inflaton stops during inflation, https://doi.org/10.1103/PhysRevD.61.103504 Phys. Rev. D 61 103504 [astro-ph/9911119] · doi:10.1103/PhysRevD.61.103504
[69] S.M. Leach and A.R. Liddle, 2001 Inflationary perturbations near horizon crossing, https://doi.org/10.1103/PhysRevD.63.043508 Phys. Rev. D 63 043508 [astro-ph/0010082] · doi:10.1103/PhysRevD.63.043508
[70] S.M. Leach, M. Sasaki, D. Wands and A.R. Liddle, 2001 Enhancement of superhorizon scale inflationary curvature perturbations, https://doi.org/10.1103/PhysRevD.64.023512 Phys. Rev. D 64 023512 [astro-ph/0101406] · doi:10.1103/PhysRevD.64.023512
[71] T. Kobayashi, M. Yamaguchi and J. Yokoyama, 2011 Generalized G-inflation: inflation with the most general second-order field equations, https://doi.org/10.1143/PTP.126.511 Prog. Theor. Phys.126 511 [1105.5723] · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[72] F. Finelli and R. Brandenberger, 2002 On the generation of a scale invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase, https://doi.org/10.1103/PhysRevD.65.103522 Phys. Rev. D 65 103522 [hep-th/0112249] · doi:10.1103/PhysRevD.65.103522
[73] M. Gasperini and G. Veneziano, 2003 The pre-big bang scenario in string cosmology, https://doi.org/10.1016/S0370-1573(02)00389-7 Phys. Rept.373 1 [hep-th/0207130] · doi:10.1016/S0370-1573(02)00389-7
[74] S. Gratton, J. Khoury, P.J. Steinhardt and N. Turok, 2004 Conditions for generating scale-invariant density perturbations, https://doi.org/10.1103/PhysRevD.69.103505 Phys. Rev. D 69 103505 [astro-ph/0301395] · doi:10.1103/PhysRevD.69.103505
[75] L.A. Boyle, P.J. Steinhardt and N. Turok, 2004 A new duality relating density perturbations in expanding and contracting Friedmann cosmologies, https://doi.org/10.1103/PhysRevD.70.023504 Phys. Rev. D 70 023504 [hep-th/0403026] · doi:10.1103/PhysRevD.70.023504
[76] Y.-S. Piao, 2005 On the dualities of primordial perturbation spectrums, https://doi.org/10.1016/j.physletb.2004.12.005 Phys. Lett. B 606 245 [hep-th/0404002] · doi:10.1016/j.physletb.2004.12.005
[77] L.E. Allen and D. Wands, 2004 Cosmological perturbations through a simple bounce, https://doi.org/10.1103/PhysRevD.70.063515 Phys. Rev. D 70 063515 [astro-ph/0404441] · doi:10.1103/PhysRevD.70.063515
[78] J. Khoury and F. Piazza, 2009 Rapidly-varying speed of sound, scale invariance and non-Gaussian signatures J. Cosmol. Astropart. Phys.2009 07 026 [0811.3633]
[79] J. Khoury and G.E.J. Miller, 2011 Towards a cosmological dual to inflation, https://doi.org/10.1103/PhysRevD.84.023511 Phys. Rev. D 84 023511 [1012.0846] · doi:10.1103/PhysRevD.84.023511
[80] D. Battefeld and P. Peter, 2015 A critical review of classical bouncing cosmologies, https://doi.org/10.1016/j.physrep.2014.12.004 Phys. Rept.571 1 [1406.2790] · Zbl 1370.83107 · doi:10.1016/j.physrep.2014.12.004
[81] R. Brandenberger and P. Peter, 2017 Bouncing cosmologies: progress and problems, https://doi.org/10.1007/s10701-016-0057-0 Found. Phys.47 797 [1603.05834] · Zbl 1372.83002 · doi:10.1007/s10701-016-0057-0
[82] C. Burrage, C. de Rham, D. Seery and A.J. Tolley, 2011 Galileon inflation J. Cosmol. Astropart. Phys.2011 01 014 [1009.2497]
[83] T. Kobayashi, M. Yamaguchi and J. Yokoyama, 2010 G-inflation: inflation driven by the Galileon field, https://doi.org/10.1103/PhysRevLett.105.231302 Phys. Rev. Lett.105 231302 [1008.0603] · doi:10.1103/PhysRevLett.105.231302
[84] S. Hirano, T. Kobayashi and S. Yokoyama, 2016 Ultra slow-roll G-inflation, https://doi.org/10.1103/PhysRevD.94.103515 Phys. Rev. D 94 103515 [1604.00141] · doi:10.1103/PhysRevD.94.103515
[85] X. Chen, H. Firouzjahi, M.H. Namjoo and M. Sasaki, 2013 A single field inflation model with large local non-Gaussianity, https://doi.org/10.1209/0295-5075/102/59001 EPL102 59001 [1301.5699] · doi:10.1209/0295-5075/102/59001
[86] X. Chen, H. Firouzjahi, E. Komatsu, M.H. Namjoo and M. Sasaki, 2013 In-in and δ N calculations of the bispectrum from non-attractor single-field inflation J. Cosmol. Astropart. Phys.2013 12 039 [1308.5341]
[87] Y.-F. Cai, X. Chen, M.H. Namjoo, M. Sasaki, D.-G. Wang and Z. Wang, 2018 Revisiting non-Gaussianity from non-attractor inflation models J. Cosmol. Astropart. Phys.2018 05 012 [1712.09998] · Zbl 1536.83155
[88] J.A. Adams, B. Cresswell and R. Easther, 2001 Inflationary perturbations from a potential with a step, https://doi.org/10.1103/PhysRevD.64.123514 Phys. Rev. D 64 123514 [astro-ph/0102236] · doi:10.1103/PhysRevD.64.123514
[89] J.-O. Gong, 2005 Breaking scale invariance from a singular inflaton potential J. Cosmol. Astropart. Phys.2005 07 015 [astro-ph/0504383]
[90] R.K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, 2010 The tensor-to-scalar ratio in punctuated inflation, https://doi.org/10.1103/PhysRevD.82.023509 Phys. Rev. D 82 023509 [0904.2518] · doi:10.1103/PhysRevD.82.023509
[91] N. Bartolo et al., 2018 Probing non-Gaussian stochastic gravitational wave backgrounds with LISA J. Cosmol. Astropart. Phys.2018 11 034 [1806.02819] · Zbl 1527.83023
[92] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, 2018 Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers, https://doi.org/10.1103/PhysRevD.97.043506 Phys. Rev. D 97 043506 [1707.03240] · doi:10.1103/PhysRevD.97.043506
[93] X. Gao, T. Kobayashi, M. Yamaguchi and J. Yokoyama, 2011 Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model, https://doi.org/10.1103/PhysRevLett.107.211301 Phys. Rev. Lett.107 211301 [1108.3513] · doi:10.1103/PhysRevLett.107.211301
[94] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, 2011 Features of heavy physics in the CMB power spectrum J. Cosmol. Astropart. Phys.2011 01 030 [1010.3693]
[95] P. Creminelli, J. Gleyzes, J. Noreña and F. Vernizzi, 2014 Resilience of the standard predictions for primordial tensor modes, https://doi.org/10.1103/PhysRevLett.113.231301 Phys. Rev. Lett.113 231301 [1407.8439] · doi:10.1103/PhysRevLett.113.231301
[96] G. Domènech, A. Naruko and M. Sasaki, 2015 Cosmological disformal invariance J. Cosmol. Astropart. Phys.2015 10 067 [1505.00174]
[97] D. Baumann, H. Lee and G.L. Pimentel, 2016 High-scale inflation and the tensor tilt J. High Energy Phys. JHEP01(2016)101 [1507.07250] · Zbl 1388.83087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.