×

Inflationary magnetogenesis with added helicity: constraints from non-Gaussianities. (English) Zbl 1391.85003

Summary: In previous work [C. Caprini and L. Sorbo, J. Cosmol. Astropart. Phys. 2014, No. 10, Article ID 056, 16 p. (2014; doi:10.1088/1475-7516/2014/10/056)] two of us have proposed a model of inflationary magnetogenesis based on a rolling auxiliary field able both to account for the magnetic fields inferred by the (non) observation of gamma-rays from blazars, and to start the galactic dynamo, without incurring in any strong coupling or strong backreaction regime. Here we evaluate the correction to the scalar spectrum and bispectrum with respect to single-field slow-roll inflation generated in that scenario. The strongest constraints on the model originate from the non-observation of a scalar bispectrum. Nevertheless, even when those constraints are taken into consideration, the scenario can successfully account for the observed magnetic fields as long as the energy scale of inflation is smaller than \(10^6\div 10^8\) GeV, under some conditions on the slow roll of the auxiliary scalar field.

MSC:

85A40 Astrophysical cosmology
76W05 Magnetohydrodynamics and electrohydrodynamics
62P35 Applications of statistics to physics
83F05 Relativistic cosmology

References:

[1] Caprini, C.; Sorbo, L., Adding helicity to inflationary magnetogenesis, J. Cosmol. Astropart. Phys., JCAP10(2014), 056, (2014) · doi:10.1088/1475-7516/2014/10/056
[2] Neronov, A.; Vovk, I., Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science, 328, 73-75, (2010) · doi:10.1126/science.1184192
[3] Taylor, A. M.; Vovk, I.; Neronov, A., Extragalactic magnetic fields constraints from simultaneous GeV–TeV observations of blazars, Astron. Astrophys., 529, A144, (2011) · doi:10.1051/0004-6361/201116441
[4] Vovk, I.; Taylor, A. M.; Semikoz, D.; Neronov, A., Fermi/LAT observations of 1ES 0229  +  200: implications for extragalactic magnetic fields and background light, Astrophys. J., 747, L14, (2012) · doi:10.1088/0004-637X/747/1/14
[5] Neronov, A.; Semikoz, D. V., Sensitivity of gamma-ray telescopes for detection of magnetic fields in intergalactic medium, Phys. Rev. D, 80, (2009) · doi:10.1103/physrevd.80.123012
[6] Caprini, C.; Gabici, S., Gamma-ray observations of blazars and the intergalactic magnetic field spectrum, Phys. Rev. D, 91, (2015) · doi:10.1103/physrevd.91.123514
[7] Brandenburg, A.; Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 417, 1-209, (2005) · doi:10.1016/j.physrep.2005.06.005
[8] Nandi, D.; Shankaranarayanan, S., Primordial magnetogenesis from vector Galileons, J. Cosmol. Astropart. Phys., JCAP01(2018), 039, (2018) · Zbl 1527.83156 · doi:10.1088/1475-7516/2018/01/039
[9] Tasinato, G., A scenario for inflationary magnetogenesis without strong coupling problem, J. Cosmol. Astropart. Phys., JCAP03(2015), 040, (2015) · doi:10.1088/1475-7516/2015/03/040
[10] Turner, M. S.; Widrow, L. M., Inflation produced, large scale magnetic fields, Phys. Rev. D, 37, 2743, (1988) · doi:10.1103/physrevd.37.2743
[11] Ratra, B., Cosmological ‘seed’ magnetic field from inflation, Astrophys. J., 391, L1-L4, (1992) · doi:10.1086/186384
[12] Garretson, W. D.; Field, G. B.; Carroll, S. M., Primordial magnetic fields from pseudoGoldstone bosons, Phys. Rev. D, 46, 5346-5351, (1992) · doi:10.1103/physrevd.46.5346
[13] Anber, M. M.; Sorbo, L., N-flationary magnetic fields, J. Cosmol. Astropart. Phys., JCAP10(2006), 018, (2006) · doi:10.1088/1475-7516/2006/10/018
[14] Adshead, P.; Giblin, J. T.; Scully, T. R.; Sfakianakis, E. I., Magnetogenesis from axion inflation, J. Cosmol. Astropart. Phys., JCAP10(2016), 039, (2016) · doi:10.1088/1475-7516/2016/10/039
[15] Son, D. T., Magnetohydrodynamics of the early universe and the evolution of primordial magnetic fields, Phys. Rev. D, 59, (1999) · doi:10.1103/physrevd.59.063008
[16] Brandenburg, A.; Kahniashvili, T.; Tevzadze, A. G., Nonhelical inverse transfer of a decaying turbulent magnetic field, Phys. Rev. Lett., 114, (2015) · doi:10.1103/PhysRevLett.114.075001
[17] Kahniashvili, T.; Brandenburg, A.; Tevzadze, A. G., The evolution of primordial magnetic field since its generation, Phys. Scr., 91, (2016) · doi:10.1088/0031-8949/91/10/104008
[18] Anber, M. M.; Sabancilar, E., Hypermagnetic fields and Baryon asymmetry from pseudoscalar inflation, Phys. Rev. D, 92, (2015) · doi:10.1103/physrevd.92.101501
[19] Fujita, T.; Kamada, K., Large-scale magnetic fields can explain the baryon asymmetry of the Universe, Phys. Rev. D, 93, (2016) · doi:10.1103/PhysRevD.93.083520
[20] Kamada, K.; Long, A. J., Baryogenesis from decaying magnetic helicity, Phys. Rev. D, 94, (2016) · doi:10.1103/physrevd.94.063501
[21] Kamada, K.; Long, A. J., Evolution of the Baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field, Phys. Rev. D, 94, (2016) · doi:10.1103/physrevd.94.123509
[22] Jimenez, D.; Kamada, K.; Schmitz, K.; Xu, X-J, Baryon asymmetry and gravitational waves from pseudoscalar inflation, J. Cosmol. Astropart. Phys., JCAP12(2017), 011, (2017) · Zbl 1515.83076 · doi:10.1088/1475-7516/2017/12/011
[23] Papageorgiou, A.; Peloso, M., Gravitational leptogenesis in natural inflation, J. Cosmol. Astropart. Phys., JCAP12(2017), 007, (2017) · doi:10.1088/1475-7516/2017/12/007
[24] Martin, J.; Yokoyama, J., Generation of large-scale magnetic fields in single-field inflation, J. Cosmol. Astropart. Phys., JCAP01(2008), 025, (2008) · doi:10.1088/1475-7516/2008/01/025
[25] Demozzi, V.; Mukhanov, V.; Rubinstein, H., Magnetic fields from inflation?, J. Cosmol. Astropart. Phys., JCAP08(2009), 025, (2009) · doi:10.1088/1475-7516/2009/08/025
[26] Bonvin, C.; Caprini, C.; Durrer, R., Magnetic fields from inflation: the transition to the radiation era, Phys. Rev. D, 86, (2012) · doi:10.1103/physrevd.86.023519
[27] Sorbo, L., Parity violation in the cosmic microwave background from a pseudoscalar inflaton, J. Cosmol. Astropart. Phys., JCAP06(2011), 003, (2011) · doi:10.1088/1475-7516/2011/06/003
[28] Barnaby, N.; Peloso, M., Large nongaussianity in axion inflation, Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.181301
[29] Cook, J. L.; Sorbo, L., An inflationary model with small scalar and large tensor nongaussianities, J. Cosmol. Astropart. Phys., JCAP11(2013), 047, (2013) · doi:10.1088/1475-7516/2013/11/047
[30] Barnaby, N.; Namba, R.; Peloso, M., Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis, Phys. Rev. D, 85, (2012) · doi:10.1103/physrevd.85.123523
[31] Barnaby, N.; Moxon, J.; Namba, R.; Peloso, M.; Shiu, G.; Zhou, P., Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev. D, 86, (2012) · doi:10.1103/physrevd.86.103508
[32] Ferreira, R. Z.; Sloth, M. S., Universal constraints on axions from inflation, J. High Energy Phys., JHEP12(2014), 139, (2014) · doi:10.1007/JHEP12(2014)139
[33] Banerjee, R.; Jedamzik, K., The evolution of cosmic magnetic fields: from the very early universe, to recombination, to the present, Phys. Rev. D, 70, (2004) · doi:10.1103/PhysRevD.70.123003
[34] Durrer, R.; Neronov, A., Cosmological magnetic fields: their generation, evolution and observation, Astron. Astrophys. Rev., 21, 62, (2013) · doi:10.1007/s00159-013-0062-7
[35] Durrer, R.; Hollenstein, L.; Jain, R. K., Can slow roll inflation induce relevant helical magnetic fields?, J. Cosmol. Astropart. Phys., JCAP03(2011), 037, (2011) · doi:10.1088/1475-7516/2011/03/037
[36] Ballardini, M.; Finelli, F.; Paoletti, D., CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity, J. Cosmol. Astropart. Phys., JCAP10(2015), 031, (2015) · doi:10.1088/1475-7516/2015/10/031
[37] Namba, R.; Peloso, M.; Shiraishi, M.; Sorbo, L.; Unal, C., Scale-dependent gravitational waves from a rolling axion, J. Cosmol. Astropart. Phys., JCAP01(2016), 041, (2016) · doi:10.1088/1475-7516/2016/01/041
[38] Field, G. B.; Carroll, S. M., Cosmological magnetic fields from primordial helicity, Phys. Rev. D, 62, (2000) · doi:10.1103/physrevd.62.103008
[39] Vachaspati, T., Estimate of the primordial magnetic field helicity, Phys. Rev. Lett., 87, (2001) · doi:10.1103/PhysRevLett.87.251302
[40] Sigl, G., Cosmological magnetic fields from primordial helical seeds, Phys. Rev. D, 66, (2002) · doi:10.1103/physrevd.66.123002
[41] Christensson, M.; Hindmarsh, M.; Brandenburg, A., Inverse cascade in decaying 3D magnetohydrodynamic turbulence, Phys. Rev. E, 64, (2001) · doi:10.1103/physreve.64.056405
[42] Campanelli, L., Evolution of magnetic fields in freely decaying magnetohydrodynamic turbulence, Phys. Rev. Lett., 98, (2007) · doi:10.1103/PhysRevLett.98.251302
[43] Campanelli, L., Evolution of primordial magnetic fields in mean-field approximation, Eur. Phys. J. C, 74, 2690, (2014) · doi:10.1140/epjc/s10052-013-2690-5
[44] Bartolo, N.; Matarrese, S.; Peloso, M.; Ricciardone, A., Anisotropic power spectrum and bispectrum in the \(f(ϕ)F^2\) mechanism, Phys. Rev. D, 87, (2013) · doi:10.1103/physrevd.87.023504
[45] Kanno, S.; Soda, J.; Watanabe, M-A, Cosmological magnetic fields from inflation and backreaction, J. Cosmol. Astropart. Phys., JCAP12(2009), 009, (2009) · doi:10.1088/1475-7516/2009/12/009
[46] Ferreira, R. Z.; Ganc, J.; Noreña, J.; Sloth, M. S.; Ferreira, R. Z.; Ganc, J.; Noreña, J.; Sloth, M. S., On the validity of the perturbative description of axions during inflation. On the validity of the perturbative description of axions during inflation, J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys., JCAP10(2016), E01, (2016) · doi:10.1088/1475-7516/2016/10/E01
[47] Peloso, M.; Sorbo, L.; Unal, C., Rolling axions during inflation: perturbativity and signatures, J. Cosmol. Astropart. Phys., JCAP09(2016), 001, (2016) · doi:10.1088/1475-7516/2016/09/001
[48] Ferreira, R. Z.; Notari, A., Thermalized axion inflation, J. Cosmol. Astropart. Phys., JCAP09(2017), 007, (2017) · doi:10.1088/1475-7516/2017/09/007
[49] Mukohyama, S.; Namba, R.; Peloso, M.; Shiu, G., Blue tensor spectrum from particle production during inflation, J. Cosmol. Astropart. Phys., JCAP08(2014), 036, (2014) · doi:10.1088/1475-7516/2014/08/036
[50] Ade, P. A R., Improved constraints on cosmology and foregrounds from BICEP2 and keck array cosmic microwave background data with inclusion of 95 GHz band, Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.031302
[51] Malik, K. A.; Wands, D., Cosmological perturbations, Phys. Rep., 475, 1-51, (2009) · doi:10.1016/j.physrep.2009.03.001
[52] Carney, D.; Fischler, W.; Kovetz, E. D.; Lorshbough, D.; Paban, S., Rapid field excursions and the inflationary tensor spectrum, J. High Energy Phys., JHEP11(2012), 042, (2012) · doi:10.1007/JHEP11(2012)042
[53] Anber, M. M.; Sorbo, L., Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D, 81, (2010) · doi:10.1103/physrevd.81.043534
[54] Ade, P. A R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17, (2016)
[55] Brandenburg, A.; Kahniashvili, T., Classes of hydrodynamic and magnetohydrodynamic turbulent decay, Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.055102
[56] Kahniashvili, T.; Brandenburg, A.; Durrer, R.; Tevzadze, A. G.; Yin, W., Scale-invariant helical magnetic field evolution and the duration of inflation, J. Cosmol. Astropart. Phys., JCAP12(2017), 002, (2017) · doi:10.1088/1475-7516/2017/12/002
[57] Brandenburg, A.; Durrer, R.; Kahniashvili, T.; Mandal, S.; Yin, W. W., Statistical properties of scale-invariant helical magnetic fields and applications to cosmology, (2018) · Zbl 1536.83149
[58] Fujita, T.; Namba, R.; Tada, Y.; Takeda, N.; Tashiro, H., Consistent generation of magnetic fields in axion inflation models, J. Cosmol. Astropart. Phys., JCAP05(2015), 054, (2015) · doi:10.1088/1475-7516/2015/05/054
[59] Abazajian, K. N., CMB-S4 science book, first edition, (2016)
[60] Kulsrud, R. M.; Zweibel, E. G., The origin of astrophysical magnetic fields, Rep. Prog. Phys., 71, 0046091, (2008) · doi:10.1088/0034-4885/71/4/046901
[61] Davis, A-C; Lilley, M.; Tornkvist, O., Relaxing the bounds on primordial magnetic seed fields, Phys. Rev. D, 60, (1999) · doi:10.1103/physrevd.60.021301
[62] Donnert, J.; Dolag, K.; Lesch, H.; Muller, E., Cluster magnetic fields from galactic outflows, Mon. Not. R. Astron. Soc., 392, 1008-1021, (2009) · doi:10.1111/j.1365-2966.2008.14132.x
[63] Ade, P. A R., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett., 112, (2014) · doi:10.1103/PhysRevLett.112.241101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.