×

Entanglement revivals as a probe of scrambling in finite quantum systems. (English) Zbl 1459.82074

Summary: The entanglement evolution after a quantum quench became one of the tools to distinguish integrable versus chaotic (non-integrable) quantum many-body dynamics. Following this line of thoughts, here we propose that the revivals in the entanglement entropy provide a finite-size diagnostic benchmark for the purpose. Indeed, integrable models display periodic revivals manifested in a dip in the block entanglement entropy in a finite system. On the other hand, in chaotic systems, initial correlations get dispersed in the global degrees of freedom (information scrambling) and such a dip is suppressed. We show that while for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size, upon breaking integrability a much faster decay is observed, signalling strong scrambling. Our results are checked by exact numerical techniques in free-fermion and free-boson theories, and by time-dependent density matrix renormalisation group in interacting integrable and chaotic models.

MSC:

82B23 Exactly solvable models; Bethe ansatz
81P42 Entanglement measures, concurrencies, separability criteria

Software:

ITensor

References:

[1] Mussardo G 2020 Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics 2nd edn (Oxford: Oxford University Press) · Zbl 1434.82004 · doi:10.1093/oso/9780198788102.001.0001
[2] Calabrese P and Cardy J 2006 Time-dependence of correlation functions following a quantum quench Phys. Rev. Lett.96 136801 · doi:10.1103/physrevlett.96.136801
[3] Calabrese P, Essler F H L and Mussardo G 2016 Introduction to ‘quantum integrability in out of equilibrium systems’ J. Stat. Mech. P064001 · doi:10.1088/1742-5468/2016/06/064001
[4] von Neumann J 1929 Beweis des Ergodensatzes und des H-theorems Z. Phys.57 30 · JFM 55.0523.05 · doi:10.1007/bf01339852
[5] Jensen R V and Shankar R 1985 Statistical behaviour in deterministic quantum systems with few degrees of freedom Phys. Rev. Lett.54 1879 · doi:10.1103/physrevlett.54.1879
[6] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046 · doi:10.1103/physreva.43.2046
[7] Srednicki M 1994 Chaos and quantum thermalisation Phys. Rev. E 50 888 · doi:10.1103/physreve.50.888
[8] Rigol M, Dunjko V and Olshanii M 2008 Thermalisation and its mechanism for generic isolated quantum systems Nature452 854 · doi:10.1038/nature06838
[9] Rigol M and Srednicki M 2012 Alternatives to eigenstate thermalisation Phys. Rev. Lett.108 110601 · doi:10.1103/physrevlett.108.110601
[10] D’Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 From quantum chaos and eigenstate thermalisation to statistical mechanics and thermodynamics Adv. Phys.65 239 · doi:10.1080/00018732.2016.1198134
[11] Gogolin C and Eisert J 2016 Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems Rep. Prog. Phys.79 056001 · doi:10.1088/0034-4885/79/5/056001
[12] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice Hard-Core bosons Phys. Rev. Lett.98 050405 · doi:10.1103/physrevlett.98.050405
[13] Cazalilla M A 2006 Effect of suddenly turning on interactions in the Luttinger model Phys. Rev. Lett.97 156403 · doi:10.1103/physrevlett.97.156403
[14] Barthel T and Schollwöck U 2008 Dephasing and the steady state in quantum many-particle systems Phys. Rev. Lett.100 100601 · doi:10.1103/physrevlett.100.100601
[15] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Exact relaxation in a class of nonequilibrium quantum lattice systems Phys. Rev. Lett.100 030602 · doi:10.1103/physrevlett.100.030602
[16] Cramer M and Eisert J 2010 A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states New J. Phys.12 055020 · Zbl 1375.82060 · doi:10.1088/1367-2630/12/5/055020
[17] Sotiriadis S, Calabrese P and Cardy J 2009 Quantum quench from a thermal initial state Europhys. Lett.87 20002 · doi:10.1209/0295-5075/87/20002
[18] Cazalilla M A, Iucci A and Chung M-C 2012 Thermalisation and quantum correlations in exactly solvable models Phys. Rev. E 85 011133 · doi:10.1103/physreve.85.011133
[19] Calabrese P, Essler F H L and Fagotti M 2011 Quantum quench in the transverse-field ising chain Phys. Rev. Lett.106 227203 · doi:10.1103/physrevlett.106.227203
[20] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators J. Stat. Mech. P07016 · doi:10.1088/1742-5468/2012/07/p07016
[21] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quenches in the transverse field Ising chain: II. Stationary state properties J. Stat. Mech. P07022 · doi:10.1088/1742-5468/2012/07/p07022
[22] Calabrese P and Cardy J 2007 Quantum quenches in extended sytems J. Stat. Mech. P06008 · Zbl 1456.81358 · doi:10.1088/1742-5468/2007/06/p06008
[23] Mossel J and Caux J-S 2012 Generalized TBA and generalized Gibbs J. Phys. A: Math. Theor.45 255001 · Zbl 1243.82027 · doi:10.1088/1751-8113/45/25/255001
[24] Fioretto D and Mussardo G 2010 Quantum quenches in integrable field theories New J. Phys.12 055015 · Zbl 1375.81169 · doi:10.1088/1367-2630/12/5/055015
[25] Sotiriadis S, Fioretto D and Mussardo G 2012 Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories J. Stat. Mech. P02017 · Zbl 1456.81254 · doi:10.1088/1742-5468/2012/02/p02017
[26] Collura M, Sotiriadis S and Calabrese P 2013 Equilibration of a Tonks-Girardeau gas following a trap release Phys. Rev. Lett.110 245301 · doi:10.1103/physrevlett.110.245301
[27] Collura M, Sotiriadis S and Calabrese P 2013 Quench dynamics of a Tonks-Girardeau gas released from a harmonic trap J. Stat. Mech. P09025 · Zbl 1456.82581 · doi:10.1088/1742-5468/2013/09/p09025
[28] Fagotti M and Essler F H L 2013 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. P07012 · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/p07012
[29] Pozsgay B 2013 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. P07003 · Zbl 1456.82311 · doi:10.1088/1742-5468/2013/07/p07003
[30] Fagotti M and Essler F H L 2013 Reduced density matrix after a quantum quench Phys. Rev. B 87 245107 · doi:10.1103/physrevb.87.245107
[31] Fagotti M 2013 Finite-size corrections vs. relaxation after a sudden quench Phys. Rev. B 87 165106 · doi:10.1103/physrevb.87.165106
[32] Sotiriadis S and Calabrese P 2014 Validity of the GGE for quantum quenches from interacting to noninteracting models J. Stat. Mech. P07024 · Zbl 1456.82024 · doi:10.1088/1742-5468/2014/07/p07024
[33] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain Phys. Rev. B 89 125101 · doi:10.1103/physrevb.89.125101
[34] Ilieveski E, De Nardis J, Wouters B, Caux J-S, Essler F H L and Prosen T 2015 Complete generalized Gibbs ensembles in an interacting theory Phys. Rev. Lett.115 157201 · doi:10.1103/physrevlett.115.157201
[35] Ilievski E, Quinn E, Nardis J D and Brockmann M 2016 String-charge duality in integrable lattice models J. Stat. Mech. 063101 · Zbl 1456.82050 · doi:10.1088/1742-5468/2016/06/063101
[36] Alba V 2015 Simulating the generalized Gibbs ensemble (GGE): a Hilbert space Monte Carlo approach (arXiv:1507.06994)
[37] Langen T et al 2015 Experimental observation of a generalized Gibbs ensemble Science348 207 · Zbl 1355.81184 · doi:10.1126/science.1257026
[38] Essler F H L, Mussardo G and Panfil M 2015 Generalized Gibbs ensembles for quantum field theories Phys. Rev. A 91 051602 · doi:10.1103/physreva.91.051602
[39] Essler F H L, Mussardo G and Panfil M 2017 On truncated generalized Gibbs ensembles in the ising field theory J. Stat. Mech. 013103 · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[40] Cardy J 2016 Quantum quenches to a critical point in one dimension: some further results J. Stat. Mech. 023103 · Zbl 1456.81049 · doi:10.1088/1742-5468/2016/02/023103
[41] Sotiriadis S 2016 Memory-preserving equilibration after a quantum quench in a 1d critical model Phys. Rev. A 94 031605 · doi:10.1103/physreva.94.031605
[42] Bastianello A and Sotiriadis S 2017 Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories J. Stat. Mech. 023105 · Zbl 1456.81459 · doi:10.1088/1742-5468/aa5738
[43] Vernier E and Cubero A C 2017 Quasilocal charges and the complete GGE for field theories with non diagonal scattering J. Stat. Mech. 23101 · Zbl 1456.81449 · doi:10.1088/1742-5468/aa5288
[44] Pozsgay B, Vernier E and Werner M A 2017 On Generalized Gibbs Ensembles with an infinite set of conserved charges J. Stat. Mech. 093103 · Zbl 1457.82282 · doi:10.1088/1742-5468/aa82c1
[45] Vidmar L and Rigol M 2016 Generalized Gibbs ensemble in integrable lattice models J. Stat. Mech. 064007 · Zbl 1456.81118 · doi:10.1088/1742-5468/2016/06/064007
[46] Essler F H L and Fagotti M 2016 Quench dynamics and relaxation in isolated integrable quantum spin chains J. Stat. Mech. 064002 · Zbl 1456.82585 · doi:10.1088/1742-5468/2016/06/064002
[47] Foini L, Gambassi A, Konik R and Cugliandolo L F 2017 Measuring effective temperatures in a generalized Gibbs ensemble Phys. Rev. E 95 052116 · doi:10.1103/physreve.95.052116
[48] Palmai T and Konik R M 2018 Quasi-local charges and the generalized Gibbs ensemble in the Lieb-Liniger model Phys. Rev. E 98 052126 · doi:10.1103/physreve.98.052126
[49] Ilievski E, Mednjak M, Prosen T and Zadnik L 2016 Quasilocal charges in integrable lattice systems J. Stat. Mech. P064008 · Zbl 1456.81238 · doi:10.1088/1742-5468/2016/06/064008
[50] Langen T, Gasenzer T and Schmiedmayer J 2016 Prethermalisation and universal dynamics in near-integrable quantum systems J. Stat. Mech. 064009 · Zbl 1456.81242 · doi:10.1088/1742-5468/2016/06/064009
[51] Marcuzzi M, Marino J, Gambassi A and Silva A 2013 Prethermalization in a Nonintegrable quantum spin chain after a quench Phys. Rev. Lett.111 197203 · doi:10.1103/physrevlett.111.197203
[52] Essler F H L, Kehrein S, Manmana S R and Robinson N J 2014 Quench dynamics in a model with tuneable integrability breaking Phys. Rev. B 89 165104 · doi:10.1103/physrevb.89.165104
[53] Brandino G P, Caux J-S and Konik R M 2015 Glimmers of a quantum KAM theorem: insights from quantum quenches in one-dimensional Bose gases Phys. Rev. X 5 041043 · doi:10.1103/physrevx.5.041043
[54] Bertini B and Fagotti M 2015 Pre-relaxation in weakly interacting models J. Stat. Mech. P07012 · Zbl 1456.82610 · doi:10.1088/1742-5468/2015/07/p07012
[55] Bertini B, Essler F H L, Groha S and Robinson N J 2015 Prethermalization and Thermalization in models with weak integrability breaking Phys. Rev. Lett.115 180601 · doi:10.1103/physrevlett.115.180601
[56] Fagotti M and Collura M 2015 Universal prethermalization dynamics of entanglement entropies after a global quench (arXiv:1507.02678)
[57] Marcuzzi M, Marino J, Gambassi A and Silva A 2016 Prethermalization from a low-density Holstein-Primakoff expansion Phys. Rev. B 94 214304 · doi:10.1103/physrevb.94.214304
[58] Alba V and Fagotti M 2017 Prethermalization at low temperature: the scent of a spontaneously broken symmetry Phys. Rev. Lett.119 010601 · doi:10.1103/physrevlett.119.010601
[59] Calabrese P and Cardy J 2005 Evolution of entanglement entropy in onedimensional systems J. Stat. Mech. P04010 · Zbl 1456.82578 · doi:10.1088/1742-5468/2005/04/p04010
[60] Alba V and Calabrese P 2017 Entanglement and thermodynamics after a quantum quench in integrable systems Proc. Natl Acad. Sci.114 7947 · Zbl 1404.82033 · doi:10.1073/pnas.1703516114
[61] Alba V and Calabrese P 2018 Entanglement dynamics after quantum quenches in generic integrable systems SciPost Phys.4 017 · doi:10.21468/scipostphys.4.3.017
[62] Calabrese P 2018 Entanglement and thermodynamics in non-equilibrium isolated quantum systems Phys. A 504 31 · Zbl 1514.82031 · doi:10.1016/j.physa.2017.10.011
[63] Zanardi P 2001 Entanglement of quantum evolutions Phys. Rev. A 63 040304 · Zbl 1255.81016 · doi:10.1103/physreva.63.040304
[64] Prosen T and Pizorn I 2007 Operator space entanglement entropy in a transverse ising chain Phys. Rev. A 76 032316 · doi:10.1103/physreva.76.032316
[65] Prosen T and Znidaric M 2007 Is the efficiency of classical simulations of quantum dynamics related to integrability? Phys. Rev. E 75 015202(R) · doi:10.1103/physreve.75.015202
[66] Znidaric M, Prosen T and Pizorn I 2008 Complexity of thermal states in quantum spin chains Phys. Rev. A 78 022103 · doi:10.1103/physreva.78.022103
[67] Pizorn I and Prosen T 2009 Operator space entanglement entropy in XY spin chains Phys. Rev. B 79 184416 · doi:10.1103/physrevb.79.184416
[68] Dubail J 2017 Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1+1 d J. Phys. A: Math. Theor.50 234001 · Zbl 1371.81045 · doi:10.1088/1751-8121/aa6f38
[69] Maldacena J, Shenker S H and Stanford D 2016 A bound on chaos J. High Energy Phys. JHEP08(2016)106 · Zbl 1390.81388 · doi:10.1007/jhep08(2016)106
[70] Blake M, Lee H and Liu H 2018 A quantum hydrodynamical description for scrambling and many-body chaos J. High Energy Phys. JHEP10(2018)127 · Zbl 1402.81163 · doi:10.1007/jhep10(2018)127
[71] Khemani V, Huse D A and Nahum A 2018 Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical, and classical chaos Phys. Rev. B 98 144304 · doi:10.1103/physrevb.98.144304
[72] Gopalakrishnan S, Huse D A, Khemani V and Vasseur R 2018 Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems Phys. Rev. B 98 220303(R) · doi:10.1103/physrevb.98.220303
[73] Hayden P and Preskill J 2007 Black holes as mirrors: quantum information in random subsystems J. High Energy Phys. JHEP09(2007)120 · doi:10.1088/1126-6708/2007/09/120
[74] Sekino Y and Susskind L 2008 Fast Scramblers J. High Energy Phys. JHEP10(2008)065 · doi:10.1088/1126-6708/2008/10/065
[75] Shenker S H and Stanford D 2014 Black holes and the butterfly effect J. High Energy Phys. JHEP03(2014)067 · Zbl 1333.83111 · doi:10.1007/jhep03(2014)067
[76] Hosur P, Qi X-L, Roberts D A and Yoshida B 2016 Chaos in quantum channels J. High Energy Phys. JHEP02(2016)004 · Zbl 1388.81050 · doi:10.1007/jhep02(2016)004
[77] Pappalardi S, Russomanno A, Zunkovic B, Iemini F, Silva A and Fazio R 2018 Scrambling and entanglement spreading in long-range spin chains Phys. Rev. B 98 134303 · doi:10.1103/physrevb.98.134303
[78] Alba V, Dubail J and Medenjak M 2019 Operator entanglement in interacting integrable quantum systems: the case of the rule 54 chain Phys. Rev. Lett.122 250603 · doi:10.1103/physrevlett.122.250603
[79] Bertini B, Kos P and Prosen T 2020 Operator entanglement in local quantum circuits I: chaotic dual-unitary circuits SciPost Phys.8 067 · doi:10.21468/SciPostPhys.8.4.067
[80] Bertini B, Kos P and Prosen T 2020 Operator entanglement in local quantum circuits II: solitons in chains of qubits SciPost Phys.8 068 · doi:10.21468/SciPostPhys.8.4.068
[81] Nie L, Nozaki M, Ryu S and Tan M T 2019 Signature of quantum chaos in operator entanglement in 2d CFTs J. Stat. Mech. 093107 · Zbl 1456.81392 · doi:10.1088/1742-5468/ab3a29
[82] Asplund C T and Bernamonti A 2014 Mutual information after a local quench in conformal field theory Phys. Rev. D 89 066015 · doi:10.1103/physrevd.89.066015
[83] Balasubramanian V, Bernamonti A, Copland N, Craps B and Galli F 2011 Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories Phys. Rev. D 84 105017 · doi:10.1103/physrevd.84.105017
[84] Asplund C T, Bernamonti A, Galli F and Hartmann T 2015 Entanglement scrambling in 2D conformal field theory J. High Energy Phys. JHEP09(2015)110 · Zbl 1388.83165 · doi:10.1007/jhep09(2015)110
[85] Leichenauer S and Moosa M 2015 Entanglement tsunami in (1+1)-dimensions Phys. Rev. D 92 126004 · doi:10.1103/physrevd.92.126004
[86] Alba V and Calabrese P 2019 Quantum information scrambling after a quantum quench Phys. Rev. B 100 115150 · doi:10.1103/physrevb.100.115150
[87] Vasseur R, Parameswaran S A and Moore J E 2015 Quantum revivals and many-body localization Phys. Rev. B 91 140202 · doi:10.1103/physrevb.91.140202
[88] Michailidis A A, Turner C J, Papic Z, Abanin D A and Serbyn M 2020 Slow Quantum thermalization and many-body revivals from mixed phase space Phys. Rev. X 10 011055 · doi:10.1103/physrevx.10.011055
[89] Cardy J 2014 Thermalization and revivals after a quantum quench in conformal field theory Phys. Rev. Lett.112 220401 · doi:10.1103/physrevlett.112.220401
[90] Stéphan J M and Dubail J 2011 Local quantum quenches in critical one-dimensional systems: entanglement, the Loschmidt echo, and light-cone effects J. Stat. Mech. 08019 · doi:10.1088/1742-5468/2011/08/p08019
[91] Najafi K and Rajabpour M A 2017 On the possibility of complete revivals after quantum quenches to a critical point Phys. Rev. B 96 014305 · doi:10.1103/physrevb.96.014305
[92] Najafi K, Rajabpour M A and Viti J 2019 Return amplitude after a quantum quench in the XY chain J. Stat. Mech. 083102 · Zbl 1456.81489 · doi:10.1088/1742-5468/ab3413
[93] Najafi K, Rajabpour M A and Viti J 2018 Light-cone velocities after a global quench in a noninteracting model Phys. Rev. B 97 205103 · doi:10.1103/physrevb.97.205103
[94] Bertini B, Kos P and Prosen T 2019 Entanglement spreading in a minimal model of maximal many-body quantum chaos Phys. Rev. X 9 021033 · doi:10.1103/physrevx.9.021033
[95] Piroli L, Bertini B, Cirac J I and Prosen T 2020 Exact dynamics in dual-unitary quantum circuits Phys. Rev. B 101 094304 · doi:10.1103/physrevb.101.094304
[96] Chan A, De Luca A and Chalker J T 2018 Solution of a minimal model for many-body quantum chaos Phys. Rev. X 8 041019 · doi:10.1103/physrevx.8.041019
[97] Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Measuring entanglement entropy in a quantum many-body system Nature528 77 · doi:10.1038/nature15750
[98] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Quantum thermalisation through entanglement in an isolated many-body system Science353 794 · doi:10.1126/science.aaf6725
[99] Daley A, Pichler H, Schachenmayer J and Zoller P 2012 Measuring entanglement growth in quench dynamics of bosons in an optical lattice Phys. Rev. Lett.109 020505 · doi:10.1103/physrevlett.109.020505
[100] Elben A, Vermersch B, Dalmonte M, Cirac J I and Zoller P 2018 Rényi entropies from random quenches in atomic Hubbard and spin models Phys. Rev. Lett.120 050406 · doi:10.1103/physrevlett.120.050406
[101] Vermersch B, Elben A, Dalmonte M, Cirac J I and Zoller P 2018 Unitary n-designs via random quenches in atomic Hubbard and spin models: application to the measurement of Rényi entropies Phys. Rev. A 97 023604 · doi:10.1103/physreva.97.023604
[102] Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Probing Rényi entanglement entropy via randomized measurements Science364 260 · doi:10.1126/science.aau4963
[103] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Leonard J and Greiner M 2019 Probing entanglement in a many-body localized system Science364 256-60 · doi:10.1126/science.aau0818
[104] Amico L, Fazio R, Osterloh A and Vedral V 2008 Entanglement in many-body systems Rev. Mod. Phys.80 517 · Zbl 1205.81009 · doi:10.1103/revmodphys.80.517
[105] Calabrese P, Cardy J and Doyon B 2009 Entanglement entropy in extended quantum systems J. Phys. A 42 500301 · Zbl 1180.81014 · doi:10.1088/1751-8121/42/50/500301
[106] Laflorencie N 2016 Quantum entanglement in condensed matter systems Phys. Rep.643 1 · doi:10.1016/j.physrep.2016.06.008
[107] Lieb E H and Robinson D W 1972 The finite group velocity of quantum spin systems Commun. Math. Phys.28 251 · doi:10.1007/bf01645779
[108] Bonnes L, Essler F H L and Läuchli A M 2014 ‘Light-cone’ dynamics after quantum quenches in spin chains Phys. Rev. Lett.113 187203 · doi:10.1103/physrevlett.113.187203
[109] Fagotti M and Calabrese P 2008 Evolution of entanglement entropy following a quantum quench: analytic results for the XY chain in a transverse magnetic field Phys. Rev. A 78 010306 · doi:10.1103/physreva.78.010306
[110] Eisler V and Peschel I 2008 Entanglement in a periodic quench Ann. Phys., Lpz.17 410 · Zbl 1153.82014 · doi:10.1002/andp.200810299
[111] Nezhadhaghighi M G and Rajabpour M A 2014 Entanglement dynamics in short and long-range harmonic oscillators Phys. Rev. B 90 205438 · doi:10.1103/physrevb.90.205438
[112] Kormos M, Bucciantini L and Calabrese P 2014 Stationary entropies after a quench from excited states in the ising chain Europhys. Lett.107 40002 · doi:10.1209/0295-5075/107/40002
[113] Bucciantini L, Kormos M and Calabrese P 2014 Quantum quenches from excited states in the Ising chain J. Phys. A: Math. Theor.47 175002 · Zbl 1291.82067 · doi:10.1088/1751-8113/47/17/175002
[114] Collura M, Kormos M and Calabrese P 2014 Stationary entropies following an interaction quench in 1D Bose gas J. Stat. Mech. P01009 · Zbl 1456.82040 · doi:10.1088/1742-5468/2014/01/p01009
[115] Bianchi E, Hackl L and Yokomizo N 2018 Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate J. High Energy Phys. JHEP03(2018)25 · Zbl 1388.81431 · doi:10.1007/jhep03(2018)025
[116] Hackl L, Bianchi E, Modak R and Rigol M 2018 Entanglement production in bosonic systems: linear and logarithmic growth Phys. Rev. A 97 032321 · doi:10.1103/physreva.97.032321
[117] Buyskikh A S, Fagotti M, Schachenmayer J, Essler F and Daley A J 2016 Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunnelling models Phys. Rev. A 93 053620 · doi:10.1103/physreva.93.053620
[118] Frerot I, Naldesi P and Roscilde T 2018 Multi-speed prethermalization in spin models with power-law decaying interactions Phys. Rev. Lett.120 050401 · doi:10.1103/physrevlett.120.050401
[119] Mozaffar M R M and Mollabashi A 2019 Entanglement evolution in Lifshitz-type scalar theories J. High Energy Phys. JHEP01(2019)137 · Zbl 1409.81022 · doi:10.1007/jhep01(2019)137
[120] Kim K-Y, Nishida M, Nozaki M, Seo M, Sugimoto Y and Tomiya A 2019 Entanglement after quantum quenches in Lifshitz scalar theories J. Stat. Mech. 093104 · Zbl 1456.81075 · doi:10.1088/1742-5468/ab417f
[121] Di Giulio G, Arias R and Tonni E 2019 Entanglement Hamiltonians in 1D free lattice models after a global quantum quench J. Stat. Mech. 123103 · Zbl 1459.81012 · doi:10.1088/1742-5468/ab4e8f
[122] Piroli L, Vernier E, Calabrese P and Pozsgay B 2019 Integrable quenches in nested spin chains I: the exact steady states J. Stat. Mech. 063103 · Zbl 1457.82039 · doi:10.1088/1742-5468/ab1c51
[123] Piroli L, Vernier E, Calabrese P and Pozsgay B 2019 Integrable quenches in nested spin chains II: fusion of boundary transfer matrices J. Stat. Mech. 063104 · Zbl 1457.82040 · doi:10.1088/1742-5468/ab1c52
[124] Mestyán M, Bertini B, Piroli L and Calabrese P 2017 Exact solution for the quench dynamics of a nested integrable system J. Stat. Mech. 083103 · Zbl 1457.82214 · doi:10.1088/1742-5468/aa7df0
[125] Modak R, Piroli L and Calabrese P 2019 Correlation and entanglement spreading in nested spin chains J. Stat. Mech. 093106 · Zbl 1457.82100 · doi:10.1088/1742-5468/ab39d5
[126] De Chiara G, Montangero S, Calabrese P and Fazio R 2006 Entanglement Entropy dynamics in Heisenberg chains J. Stat. Mech. P03001 · doi:10.1088/1742-5468/2006/03/p03001
[127] Kim H and Huse D A 2013 Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System Phys. Rev. Lett.111 127205 · doi:10.1103/physrevlett.111.127205
[128] Nahum A, Ruhman J, Vijay S and Haah J 2017 Quantum entanglement growth under random unitary dynamics Phy. Rev. X 7 031016 · doi:10.1103/physrevx.7.031016
[129] Laeuchli A and Kollath C 2008 Spreading of correlations and entanglement after a quench in the Bose-Hubbard model J. Stat. Mech. P05018 · doi:10.1088/1742-5468/2008/05/p05018
[130] Nahum A, Vijay S and Haah J 2018 Operator spreading in random unitary circuits Phys. Rev. X 8 021014 · doi:10.1103/physrevx.8.021014
[131] Nahum A, Ruhman J and Huse D A 2018 Dynamics of entanglement and transport in 1D systems with quenched randomness Phys. Rev. B 98 035118 · doi:10.1103/physrevb.98.035118
[132] von Keyserlingk C, Rakovszky T, Pollmann F and Sondhi S 2018 Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws Phys. Rev. X 8 021013 · doi:10.1103/physrevx.8.021013
[133] Kormos M, Collura M, Takács G and Calabrese P 2017 Real time confinement following a quantum quench to a non-integrable model Nat. Phys.13 246 · doi:10.1038/nphys3934
[134] Collura M, Kormos M and Takacs G 2018 Dynamical manifestation of Gibbs paradox after a quantum quench Phys. Rev. A 98 053610 · doi:10.1103/physreva.98.053610
[135] Alba V 2018 Entanglement and quantum transport in integrable systems Phys. Rev. B 97 245135 · doi:10.1103/physrevb.97.245135
[136] Bertini B, Fagotti M, Piroli L and Calabrese P 2018 Entanglement evolution and generalised hydrodynamics: noninteracting systems J. Phys. A: Math. Theor.51 39LT01 · Zbl 1427.82037 · doi:10.1088/1751-8121/aad82e
[137] Alba V, Bertini B and Fagotti M 2019 Entanglement evolution and generalised hydrodynamics: interacting integrable systems SciPost Phys.7 005 · doi:10.21468/scipostphys.7.1.005
[138] Bastianello A, Alba V and Caux J-S 2019 Generalized hydrodynamics with space-time inhomogeneous interactions Phys. Rev. Lett.123 130602 · doi:10.1103/physrevlett.123.130602
[139] Dubail J, Stéphan J-M, Viti J and Calabrese P 2017 Conformal field theory for inhomogeneous one-dimensional quantum systems: the example of non-interacting Fermi gases SciPost Phys.2 002 · doi:10.21468/scipostphys.2.1.002
[140] Mestyan M and Alba V 2020 Molecular dynamics simulation of entanglement spreading in generalized hydrodynamics SciPost Phys.8 055 · doi:10.21468/SciPostPhys.8.4.055
[141] Cao X, Tilloy A and De Luca A 2019 Entanglement in a fermion chain under continuous monitoring SciPost Phys.7 024 · doi:10.21468/scipostphys.7.2.024
[142] Ruggiero P, Brun Y and Dubail J 2019 Conformal field theory on top of a breathing one-dimensional gas of hard core bosons SciPost Phys.6 051 · doi:10.21468/scipostphys.6.4.051
[143] Bertini B, Tartaglia E and Calabrese P 2018 Entanglement and diagonal entropies after a quench with no pair structure J. Stat. Mech. 063104 · Zbl 1459.81014 · doi:10.1088/1742-5468/aac73f
[144] Bastianello A and Calabrese P 2018 Spreading of entanglement and correlations after a quench with intertwined quasiparticles SciPost Phys.5 033 · doi:10.21468/scipostphys.5.4.033
[145] Bastianello A and Collura M 2020 Entanglement spreading and quasiparticle picture beyond the pair structure SciPost Phys.8 045 · doi:10.21468/scipostphys.8.3.045
[146] Alba V and Calabrese P 2017 Quench action and Renyi entropies in integrable systems Phys. Rev. B 96 115421 · doi:10.1103/physrevb.96.115421
[147] Alba V and Calabrese P 2017 Renyi entropies after releasing the Néel state in the XXZ spin-chain J. Stat. Mech. 113105 · Zbl 1457.82011 · doi:10.1088/1742-5468/aa934c
[148] Alba V 2019 Towards a generalized hydrodynamics description of Renyi entropies in integrable systems Phys. Rev. B 99 045150 · doi:10.1103/physrevb.99.045150
[149] Mestyan M, Alba V and Calabrese P 2018 Renyi entropies of generic thermodynamic macrostates in ntegrable systems J. Stat. Mech. 083104 · Zbl 1457.82280 · doi:10.1088/1742-5468/aad6b9
[150] Coser A, Tonni E and Calabrese P 2014 Entanglement negativity after a global quantum quench J. Stat. Mech. P12017 · Zbl 1456.81055 · doi:10.1088/1742-5468/2014/12/p12017
[151] Alba V and Calabrese P 2019 Quantum information dynamics in multipartite integrable systems Europhys. Lett.126 60001 · doi:10.1209/0295-5075/126/60001
[152] Kudler-Flam J, Nozaki M, Ryu S and Tan M T 2020 Quantum vs. classical information: operator negativity as a probe of scrambling J. High Energy Phys. JHEP01(2020)31 · Zbl 1434.81107 · doi:10.1007/jhep01(2020)031
[153] Alba V and Carollo F 2020 Spreading of correlations in Markovian open quantum systems (arXiv:2002.09527)
[154] Maity S, Bandyopadhyay S, Bhattacharjee S and Dutta A 2020 Growth of mutual information in a quenched one-dimensional open quantum manybody system Phys. Rev. B 101 180301(R) · doi:10.1103/PhysRevB.101.180301
[155] Chapman S, Eisert J, Hackl L, Heller M P, Jefferson R, Marrochio H and Myers R C 2019 SciPost Phys.6 034 · doi:10.21468/scipostphys.6.3.034
[156] Sachdev S 2001 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[157] Sengupta K, Powell S and Sachdev S 2004 Quench dynamics across quantum critical points Phys. Rev. A 69 053616 · doi:10.1103/physreva.69.053616
[158] Castro-Alvaredo O A, Lencses M, Szecsenyi I M and Viti J 2019 Entanglement dynamics after a quench in Ising field theory: a branch point twist field approach J. High Energy Phys. JHEP12(2019)079 · doi:10.1007/jhep12(2019)079
[159] Mazza P P, Stéphan J-M, Canovi E, Alba V, Brockmann M and Haque M 2016 Overlap distributions for quantum quenches in the anisotropic Heisenberg chain J. Stat. Mech. P013104 · Zbl 1456.81465 · doi:10.1088/1742-5468/2016/01/013104
[160] Peschel I 2003 Calculation of reduced density matrices from correlation functions J. Phys. A: Math. Gen.36 L205 · Zbl 1049.82011 · doi:10.1088/0305-4470/36/14/101
[161] Peschel I 2012 Entanglement in solvable many-particle models Braz. J. Phys.42 267 · doi:10.1007/s13538-012-0074-1
[162] Peschel I and Eisler V 2009 Reduced density matrices and entanglement entropy in free lattice models J. Phys. A: Math. Theor.42 504003 · Zbl 1179.81032 · doi:10.1088/1751-8113/42/50/504003
[163] Eisler V and Racz Z 2013 Full counting statistics in a propagating quantum front and random matrix spectra Phys. Rev. Lett.110 060602 · doi:10.1103/physrevlett.110.060602
[164] Calabrese P, Le Doussal P and Majumdar S N 2015 Random matrices and entanglement entropy of trapped Fermi gases Phys. Rev. A 91 012303 · doi:10.1103/physreva.91.012303
[165] Mendl C B and Spohn H 2016 Searching for the Tracy-Widom distribution in nonequilibrium processes Phys. Rev. E 93 060101 · doi:10.1103/physreve.93.060101
[166] Viti J, Stephan J-M, Dubail J and Haque M 2016 Inhomogeneous quenches in a free fermionic chain: exact results Europhys. Lett.115 40011 · doi:10.1209/0295-5075/115/40011
[167] Allegra N, Dubail J, Stephan J-M and Viti J 2016 Inhomogeneous field theory inside the arctic circle J. Stat. Mech. 053108 · Zbl 1456.82220 · doi:10.1088/1742-5468/2016/05/053108
[168] Le Doussal P, Majumdar S N and Schehr G 2018 Multicritical edge statistics for the momenta of fermions in nonharmonic traps Phys. Rev. Lett.121 030603 · doi:10.1103/physrevlett.121.030603
[169] Stéphan J-M 2019 Free fermions at the edge of interacting systems SciPost Phys.6 057 · doi:10.21468/scipostphys.6.5.057
[170] Cotler J S, Hertzberg M P, Mezei M and Mueller M T 2016 Entanglement growth after a global quench in free scalar field theory J. High Energy Phys. JHEP11(2016)116 · doi:10.1007/jhep11(2016)166
[171] Peschel I and Chung M-C 1999 Density matrices for a chain of oscillators J. Phys. A 32 8419 · Zbl 0955.82005 · doi:10.1088/0305-4470/32/48/305
[172] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press) · Zbl 0998.82503 · doi:10.1017/CBO9780511524332
[173] Gaudin M 1983 La fonction d’onde de Bethe (Paris: Masson) · Zbl 0509.60093
[174] Gaudin M 2014 The Bethe Wave Function (Cambridge: Cambridge University Press) (translated by J-S Caux) · Zbl 1335.81010 · doi:10.1017/CBO9781107053885
[175] Brockmann M, Wouters B, Fioretto D, De Nardis J, Vlijm R and Caux J-S 2014 Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain J. Stat. Mech. P12009 · Zbl 1456.82233 · doi:10.1088/1742-5468/2014/12/p12009
[176] Wouters B, De Nardis J, Brockmann M, Fioretto D, Rigol M and Caux J-S 2014 Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions Phys. Rev. Lett.113 117202 · doi:10.1103/physrevlett.113.117202
[177] Pozsgay B, Mestyan M, Werner M A, Kormos M, Zarand G and Takacs G 2014 Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble Phys. Rev. Lett.113 117203 · doi:10.1103/physrevlett.113.117203
[178] Piroli L, Pozsgay B and Vernier E 2017 From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains J. Stat. Mech. 23106 · Zbl 1456.81469 · doi:10.1088/1742-5468/aa5d1e
[179] Mestyán M, Pozsgay B, Takács G and Werner M A 2015 Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble J. Stat. Mech. P04001 · Zbl 1456.82298 · doi:10.1088/1742-5468/2015/04/p04001
[180] Alba V and Calabrese P 2016 The quench action approach in finite integrable spin chains J. Stat. Mech. 043105 · Zbl 1456.82215 · doi:10.1088/1742-5468/2016/04/043105
[181] Piroli L, Vernier E and Calabrese P 2016 Exact steady states for quantum quenches in integrable Heisenberg spin chains Phys. Rev. B 94 054313 · doi:10.1103/physrevb.94.054313
[182] Piroli L, Vernier E, Calabrese P and Rigol M 2017 Correlations and diagonal entropy after quantum quenches in XXZ chains Phys. Rev. B 95 054308 · doi:10.1103/physrevb.95.054308
[183] Piroli L, Pozsgay B and Vernier E 2017 What is an integrable quench? Nucl. Phys. B 925 362 · Zbl 1375.81191 · doi:10.1016/j.nuclphysb.2017.10.012
[184] Alba V, Tagliacozzo L and Calabrese P 2010 Entanglement entropy of two disjoint blocks in critical Ising models Phys. Rev. B 81 060411 · doi:10.1103/physrevb.81.060411
[185] De Nardis J, Piroli L and Caux J-S 2015 Relaxation dynamics of local observables in integrable systems J. Phys. A: Math. Theor.48 43FT01 · Zbl 1330.82041 · doi:10.1088/1751-8113/48/43/43ft01
[186] De Nardis J and Caux J-S 2014 Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons J. Stat. Mech. P12012 · Zbl 1456.82043 · doi:10.1088/1742-5468/2014/12/p12012
[187] White S R and Feiguin A E 2004 Real-time evolution using the density matrix renormalization group Phys. Rev. Lett.93 076401 · doi:10.1103/physrevlett.93.076401
[188] Daley A J, Kollath C, Schollock U and Vidal G 2004 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces J. Stat. Mech. P04005 · Zbl 1075.82015 · doi:10.1088/1742-5468/2004/04/p04005
[189] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys., NY326 96 · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[190] Fishmann M, White S R and Stoudenmire E M 2020 The ITensor Software Library for Tensor Network Calculations (arXiv:2007.14822)
[191] De Luca A, Collura M and De Nardis J 2017 Nonequilibrium spin transport in integrable spin chains: persistent currents and emergence of magnetic domains Phys. Rev. B 96 020403(R) · doi:10.1103/physrevb.96.020403
[192] Zhou T and Ludwig A W W 2020 On the diffusive scaling of Rényi entanglement entropy Phys. Rev. Res.2 033020 · doi:10.1103/PhysRevResearch.2.033020
[193] Znidaric M 2019 Entanglement growth in diffusive systems Comm. Phys.3 100 · doi:10.1038/s42005-020-0366-7
[194] Rakovszky T, Pollmann F and von Keyserlingk C W 2019 Sub-ballistic growth of Renyi entropies due to diffusion Phys. Rev. Lett.122 250602 · doi:10.1103/physrevlett.122.250602
[195] Rakovszky T, von Keyserlingk C W and Pollmann F 2019 Entanglement growth after inhomogenous quenches Phys. Rev. B 100 125139 · doi:10.1103/physrevb.100.125139
[196] Khemani V, Vishwanath A and Huse D A 2018 Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws Phys. Rev. X 8 031057 · doi:10.1103/physrevx.8.031057
[197] Collura M, De Luca A and Viti J 2018 Analytic solution of the domain-wall nonequilibrium stationary state Phys. Rev. B 97 081111 · doi:10.1103/physrevb.97.081111
[198] Misguich G, Mallick K and Krapivsky P L 2017 Dynamics of the spin-1/2 Heisenberg chain initialized in a domain-wall state Phys. Rev. B 96 195151 · doi:10.1103/physrevb.96.195151
[199] Collura M, De Luca A, Calabrese P and Dubail J 2020 Domain-wall melting in the spin-1/2 XXZ spin chain: emergent Luttinger liquid with fractal quasi-particle charge (arXiv:2001.04948)
[200] Alba V and Heidrich-Meisner F 2014 Entanglement spreading after a geometric quench in quantum spin chains Phys. Rev. B 90 075144 · doi:10.1103/physrevb.90.075144
[201] Gruber M and Eisler V 2019 Magnetization and entanglement after a geometric quench in the XXZ chain Phys. Rev. B 99 174403 · doi:10.1103/physrevb.99.174403
[202] LeBlond T, Mallayya K, Vidmar L and Rigol M 2019 Entanglement and matrix elements of observables in interacting integrable systems Phys. Rev. E 100 062134 · doi:10.1103/physreve.100.062134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.