×

Pre-relaxation in weakly interacting models. (English) Zbl 1456.82610

Summary: We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\( \frac{1}{2}\) chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length [M. Marcuzzi et al., “Prethermalization in a nonintegrable quantum spin chain after a quench”, Phys. Rev. Lett. 111, Article ID 197203, 5 p. (2013)]. Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

MSC:

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

References:

[1] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature415 39 · doi:10.1038/415039a
[2] Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton’s cradle Nature440 900 · doi:10.1038/nature04693
[3] Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Adu Smith D, Demler E and Schmiedmayer J 2012 Relaxation and prethermalization in an isolated quantum system Science337 1318 · doi:10.1126/science.1224953
[4] Langen T, Gring M, Kuhnert M, Rauer B, Geiger R, Smith D A, Mazets I E and Schmiedmayer J 2013 Prethermalization in one-dimensional Bose gases: Description by a stochastic Ornstein-Uhlenbeck process Eur. Phys. J. Spec. Top.217 43 · doi:10.1126/science.1224953
[5] Trotzky S, Chen Y-A, Flesch A, McCulloch I P, Schollwöck U, Eisert J and Bloch I 2012 Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas Nat. Phys.8 325 · doi:10.1038/nphys2232
[6] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Light-cone-like spreading of correlations in a quantum many-body system Nature481 484 · doi:10.1038/nature10748
[7] Schneider U et al 2012 Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms Nat. Phys.8 213 · doi:10.1038/nphys2205
[8] Meinert F, Mark M J, Kirilov E, Lauber K, Weinmann P, Daley A J and Nägerl H-C 2013 Quantum quench in an atomic one-dimensional Ising chain Phys. Rev. Lett.111 053003 · doi:10.1103/PhysRevLett.111.053003
[9] Fukuhara T et al 2013 Quantum dynamics of a mobile spin impurity Nat. Phys.9 235 · doi:10.1038/nphys2561
[10] Fukuhara T, Schauß P, Endres M, Hild S, Cheneau M, Bloch I and Gross C 2013 Microscopic observation of magnon bound states and their dynamics Nature502 76 · doi:10.1038/nature12541
[11] Meinert F, Mark M J, Kirilov E, Lauber K, Weinmann P, Gröbner M and Nägerl H-C 2014 Interaction-induced quantum phase revivals and evidence for the transition to the quantum chaotic regime in 1D atomic bloch oscillations Phys. Rev. Lett.112 193003 · doi:10.1103/PhysRevLett.112.193003
[12] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863 · doi:10.1103/RevModPhys.83.863
[13] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett.98 050405 · doi:10.1103/PhysRevLett.98.050405
[14] Rigol M, Muramatsu A and Olshanii M 2006 Hard-core bosons on optical superlattices: dynamics and relaxation in the superfluid and insulating regimes Phys. Rev. A 74 053616 · doi:10.1103/PhysRevA.74.053616
[15] Cazalilla M A 2006 Effect of suddenly turning on interactions in the Luttinger model Phys. Rev. Lett.97 156403 · doi:10.1103/PhysRevLett.97.156403
[16] Iucci A and Cazalilla M A 2009 Quantum quench dynamics of the Luttinger model Phys. Rev. A 80 063619 · doi:10.1103/PhysRevA.80.063619
[17] Iucci A and Cazalilla M A 2010 Quantum quench dynamics of the sine-Gordon model in some solvable limits New J. Phys.12 055019 · Zbl 1375.82063 · doi:10.1103/PhysRevA.80.063619
[18] Caux J-S and Essler F H L 2013 Time evolution of local observables after quenching to an integrable model Phys. Rev. Lett.110 257203 · doi:10.1103/PhysRevLett.110.257203
[19] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Exact relaxation in a class of nonequilibrium quantum lattice systems Phys. Rev. Lett.100 030602 · doi:10.1103/PhysRevLett.100.030602
[20] Barthel T and Schollwöck U 2008 Dephasing and the steady state in quantum many-particle systems Phys. Rev. Lett.100 100601 · doi:10.1103/PhysRevLett.100.100601
[21] Fagotti M and Essler F H L 2013 Reduced density matrix after a quantum quench Phys. Rev. B 87 245107 · doi:10.1103/PhysRevB.87.245107
[22] Cramer M and Eisert J 2010 A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states New J. Phys.12 055020 · Zbl 1375.82060 · doi:10.1088/1367-2630/12/5/055020
[23] Calabrese P, Essler F H L and Fagotti M 2011 Quantum quench in the transverse field Ising chain Phys. Rev. Lett.106 227203 · doi:10.1103/PhysRevLett.106.227203
[24] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators J. Stat. Mech. P07016 · doi:10.1103/PhysRevLett.106.227203
[25] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quenches in the transverse field Ising chain: II. Stationary state properties J. Stat. Mech. P07022 · doi:10.1103/PhysRevLett.106.227203
[26] Eckstein M and Kollar M 2008 Nonthermal steady states after an interaction quench in the Falicov-Kimball model Phys. Rev. Lett.100 120404 · doi:10.1103/PhysRevLett.100.120404
[27] Kollar M and Eckstein M 2008 Relaxation of a one-dimensional Mott insulator after an interaction quench Phys. Rev. A 78 013626 · doi:10.1103/PhysRevLett.100.120404
[28] Gramsch C and Rigol M 2012 Quenches in a quasidisordered integrable lattice system: dynamics and statistical description of observables after relaxation Phys. Rev. A 86 053615 · doi:10.1103/PhysRevA.86.053615
[29] Caux J-S and Konik R M 2012 Constructing the generalized Gibbs ensemble after a quantum quench Phys. Rev. Lett.109 175301 · doi:10.1103/PhysRevLett.109.175301
[30] Cazalilla M A, Iucci A and Chung M-C 2012 Thermalization and quantum correlations in exactly solvable models Phys. Rev. E 85 011133 · doi:10.1103/PhysRevE.85.011133
[31] Gurarie V 2013 Global large time dynamics and the generalized Gibbs ensemble J. Stat. Mech. P02014 · Zbl 1456.82588 · doi:10.1088/1742-5468/2013/02/P02014
[32] Collura M, Sotiriadis S and Calabrese P 2013 Equilibration of a Tonks-Girardeau gas following a trap release Phys. Rev. Lett.110 245301 · doi:10.1103/PhysRevLett.110.245301
[33] Collura M, Sotiriadis S and Calabrese P 2013 Quench dynamics of a Tonks-Girardeau gas released from a harmonic trap J. Stat. Mech. P09025 · Zbl 1456.82581 · doi:10.1103/PhysRevLett.110.245301
[34] He K, Santos L F, Wright T M and Rigol M 2013 Single-particle and many-body analyses of a quasiperiodic integrable system after a quench Phys. Rev. A 87 063637 · doi:10.1103/PhysRevA.87.063637
[35] Goldstein G and Andrei N 2013 Equilibration and generalized GGE in the Lieb Liniger gas arXiv:1309.3471
[36] Dora B, Bacsi A and Zarand G 2012 Generalized Gibbs ensemble and work statistics of a quenched Luttinger liquid Phys. Rev. B 86 161109 · doi:10.1103/PhysRevB.86.161109
[37] Nessi N and Iucci A 2013 Quantum quench dynamics of the Coulomb Luttinger model Phys. Rev. B 87 085137 · doi:10.1103/PhysRevB.87.085137
[38] Kormos M, Collura M and Calabrese P 2014 Analytic results for a quantum quench from free to hard-core one-dimensional bosons Phys. Rev. A 89 013609 · doi:10.1103/PhysRevA.89.013609
[39] Rajabpour M A and Sotiriadis S 2014 Quantum quench of the trap frequency in the harmonic Calogero model Phys. Rev. A 89 033620 · doi:10.1103/PhysRevA.89.033620
[40] Sotiriadis S and Calabrese P 2014 Validity of the GGE for quantum quenches from interacting to noninteracting models J. Stat. Mech. P07024 · Zbl 1456.82024 · doi:10.1088/1742-5468/2014/07/P07024
[41] Fioretto D and Mussardo G 2010 Quantum quenches in integrable field theories New J. Phys.12 055015 · Zbl 1375.81169 · doi:10.1088/1367-2630/12/5/055015
[42] Pozsgay B 2013 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. P07003 · Zbl 1456.82311 · doi:10.1088/1742-5468/2013/07/P07003
[43] Fagotti M and Essler F H L 2013 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. P07012 · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/P07012
[44] Mussardo G 2013 Infinite-time average of local fields in an integrable quantum field theory after a quantum quench Phys. Rev. Lett.111 100401 · doi:10.1103/PhysRevLett.111.100401
[45] Kormos M, Shashi A, Chou Y-Z, Caux J-S and Imambekov A 2013 Interaction quenches in the one-dimensional Bose gas Phys. Rev. B 88 205131 · doi:10.1103/PhysRevB.88.205131
[46] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-12 Heisenberg XXZ chain Phys. Rev. B 89 125101 · doi:10.1103/PhysRevB.89.125101
[47] De Nardis J, Wouters B, Brockmann M and Caux J-S 2014 Solution for an interaction quench in the Lieb-Liniger Bose gas Phys. Rev. A 89 033601 · doi:10.1103/PhysRevA.89.033601
[48] Wouters B, Brockmann M, De Nardis J, Fioretto D and Caux J-S 2014 Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions Phys. Rev. Lett.113 117202 · doi:10.1103/PhysRevLett.113.117202
[49] Pozsgay B, Mestyán M, Werner M A, Kormos M, Zaránd G and Takács G 2014 Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble Phys. Rev. Lett.113 117203 · doi:10.1103/PhysRevLett.113.117203
[50] Goldstein G and Andrei N 2014 Failure of the GGE hypothesis for integrable models with bound states arXiv:1405.4224
[51] Calabrese P and Cardy J 2007 Quantum quenches in extended systems J. Stat. Mech. P06008 · Zbl 1456.81358 · doi:10.1088/1742-5468/2007/06/P06008
[52] Foini L, Cugliandolo L F and Gambassi A 2011 Fluctuation-dissipation relations and critical quenches in the transverse field Ising chain Phys. Rev. B 84 212404 · doi:10.1103/PhysRevB.84.212404
[53] Essler F H L, Evangelisti S and Fagotti M 2012 Dynamical correlations after a quantum quench Phys. Rev. Lett.109 247206 · doi:10.1103/PhysRevLett.109.247206
[54] Pozsgay B 2014 Quantum quenches and generalized Gibbs ensemble in a Bethe Ansatz solvable lattice model of interacting bosons J. Stat. Mech. P10045 · Zbl 1456.82312 · doi:10.1088/1742-5468/2014/10/P10045
[55] Essler F H L, Mussardo G and Panfil M 2015 Generalized Gibbs ensembles for quantum field theories Phys. Rev. A 91 051602 · doi:10.1103/PhysRevA.91.051602
[56] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046 · doi:10.1103/PhysRevA.43.2046
[57] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888 · doi:10.1103/PhysRevE.50.888
[58] Rigol M and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854 · doi:10.1038/nature06838
[59] Biroli G, Kollath C and Läuchli A M 2010 Effect of rare fluctuations on the thermalization of isolated quantum systems Phys. Rev. Lett.105 250401 · doi:10.1103/PhysRevLett.105.250401
[60] Bañuls M C, Cirac J I and Hastings M B 2011 Strong and weak thermalization of infinite nonintegrable quantum systems Phys. Rev. Lett.106 050405 · doi:10.1103/PhysRevLett.106.050405
[61] Brandino G P, De Luca A, Konik R M and Mussardo G 2012 Quench dynamics in randomly generated extended quantum models Phys. Rev. B 85 214435 · doi:10.1103/PhysRevB.85.214435
[62] Sirker J, Konstantinidis N P, Andraschko F and Sedlmayr N 2014 Locality and thermalization in closed quantum systems Phys. Rev. A 89 042104 · doi:10.1103/PhysRevA.89.042104
[63] Moeckel M and Kehrein S 2008 Interaction quench in the Hubbard model Phys. Rev. Lett.100 175702 · doi:10.1103/PhysRevLett.100.175702
[64] Moeckel M and Kehrein S 2009 Real-time evolution for weak interaction quenches in quantum systems Ann. Phys.324 2146 · Zbl 1177.82086 · doi:10.1103/PhysRevLett.100.175702
[65] Rosch A, Rasch D, Binz B and Vojta M 2008 Metastable superfluidity of repulsive fermionic atoms in optical lattices Phys. Rev. Lett.101 265301 · doi:10.1103/PhysRevLett.101.265301
[66] Kollar M, Wolf F A and Eckstein M 2011 Generalized Gibbs ensemble prediction of prethermalization plateaus and Their relation to nonthermal steady states in integrable systems Phys. Rev. B 84 054304 · doi:10.1103/PhysRevB.84.054304
[67] Marcuzzi M, Marino J, Gambassi A and Silva A 2013 Prethermalization in a nonintegrable quantum spin chain after a quench Phys. Rev. Lett.111 197203 · doi:10.1103/PhysRevLett.111.197203
[68] Essler F H L, Kehrein S, Manmana S R and Robinson N J 2014 Quench dynamics in a model with tuneable integrability breaking Phys. Rev. B 89 165104 · doi:10.1103/PhysRevB.89.165104
[69] Brandino G P, Caux J -S and Konik R M 2014 Glimmers of a quantum KAM theorem: insights from quantum quenches in one dimensional Bose gases arXiv:1407.7167
[70] Fagotti M 2014 Conservation laws for a class of generic Hamiltonians arXiv:1408.1950
[71] Fagotti M 2013 Finite-size corrections versus relaxation after a sudden quench Phys. Rev. B 87 165106 · doi:10.1103/PhysRevB.87.165106
[72] Fagotti M 2014 On conservation laws, relaxation and pre-relaxation after a quantum quench J. Stat. Mech. P03016 · Zbl 1456.81232 · doi:10.1088/1742-5468/2014/03/P03016
[73] Calabrese P and Cardy J 2006 Time dependence of correlation functions following a quantum quench Phys. Rev. Lett.96 136801 · doi:10.1103/PhysRevLett.96.136801
[74] Bucciantini L, Kormos M and Calabrese P 2014 Quantum quenches from excited states in the Ising chain J. Phys. A: Math. Theor.47 175002 · Zbl 1291.82067 · doi:10.1088/1751-8113/47/17/175002
[75] Mazza P P, Collura M, Kormos M and Calabrese P 2014 Interaction quench in a trapped one-dimensional Bose gas J. Stat. Mech. P11016 · Zbl 1456.81113 · doi:10.1088/1742-5468/2014/11/P11016
[76] Rajabpour M A and Sotiriadis S 2015 Quantum quench in long-range field theories Phys. Rev. B 91 045131 · doi:10.1103/PhysRevB.91.045131
[77] Bertini B, Schuricht D and Essler F H L 2014 Quantum quench in the sine-Gordon model J. Stat. Mech. P10035 · Zbl 1456.81047 · doi:10.1088/1742-5468/2014/10/P10035
[78] De Nardis J and Caux J-S 2014 Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons J. Stat. Mech. P12012 · Zbl 1456.82043 · doi:10.1088/1742-5468/2014/12/P12012
[79] Delfino G 2014 Quantum quenches with integrable pre-quench dynamics J. Phys. A 47 402001 · Zbl 1300.81027 · doi:10.1088/1751-8113/47/40/402001
[80] Gambassi A and Calabrese P 2011 Quantum quenches as classical critical films Europhys. Lett.95 66007 · doi:10.1209/0295-5075/95/66007
[81] Sotiriadis S and Cardy J 2010 Quantum quench in interacting field theory: a self-consistent approximation Phys. Rev. B 81 134305 · doi:10.1103/PhysRevB.81.134305
[82] Sciolla B and Biroli G 2011 Dynamical transitions and quantum quenches in mean-field models J. Stat. Mech. P11003 · Zbl 1456.82570 · doi:10.1088/1742-5468/2011/11/P11003
[83] Yuzbashyan E A, Dzero M, Gurarie V and Foster M S 2015 Quantum quench phase diagrams of an s-wave BCS-BEC condensate Phys. Rev.91 033628 · doi:10.1103/physreva.91.033628
[84] Wegner F 1994 Flow-equations for Hamiltonians Ann. Phys.506 77 · Zbl 0810.35099 · doi:10.1002/andp.19945060203
[85] Carleo G, Becca F, Schiró M and Fabrizio M 2012 Localization and glassy dynamics Of many-body quantum system Sci. Rep.2 243 · doi:10.1038/srep00243
[86] Ilievski E and Prosen T 2013 Thermodyamic bounds on drude weights in terms of almost-conserved quantities Commun. Math. Phys.318 809 · Zbl 1271.82002 · doi:10.1007/s00220-012-1599-4
[87] Kastner M 2010 Nonequivalence of ensembles for long-range quantum spin systems in optical lattices Phys. Rev. Lett.104 240403 · doi:10.1103/PhysRevLett.104.240403
[88] Bravyi S, Hastings M B and Verstraete F 2006 Lieb-Robinson bounds and the generation of correlations and topological quantum order Phys. Rev. Lett.97 050401 · doi:10.1103/PhysRevLett.97.050401
[89] Alba V, Fagotti M and Calabrese P 2009 Entanglement entropy of excited states J. Stat. Mech. P10020 · Zbl 1456.82216 · doi:10.1088/1742-5468/2009/10/P10020
[90] Berry M V and Tabor M 1977 Level clustering in the regular spectrum Proc. R. Soc. Lond.356 375 · Zbl 1119.81395 · doi:10.1098/rspa.1977.0140
[91] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Random-matrix theories in quantum physics: common concepts Phys. Rep.299 189 · doi:10.1016/S0370-1573(97)00088-4
[92] Caux J-S and Mossel J 2011 Remarks on the notion of quantum integrability J. Stat. Mech. P02023 · doi:10.1088/1742-5468/2011/02/P02023
[93] Fagotti M and Calabrese P 2010 Entanglement entropy of two disjoint blocks in XY chains J. Stat. Mech. P04016 · doi:10.1088/1742-5468/2010/04/P04016
[94] Kormos M, Bucciantini L and Calabrese P 2014 Stationary entropies after a quench from excited states in the Ising chain Europhys. Lett.107 40002 · doi:10.1209/0295-5075/107/40002
[95] Ares F, Esteve J G, Falceto F and Sánchez-Burillo E 2014 Excited state entanglement in homogeneous fermionic chains J. Phys. A: Math. Theor.47 245301 · Zbl 1300.28006 · doi:10.1088/1751-8113/47/24/245301
[96] Collura M and Fagotti M unpublished
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.