×

On generalized Gibbs ensembles with an infinite set of conserved charges. (English) Zbl 1457.82282

Summary: We revisit the question of whether and how the steady states arising after non-equilibrium time evolution in integrable models (and in particular in the XXZ spin chain) can be described by the so-called generalized Gibbs ensemble (GGE). Whereas it is known that the micro-canonical ensemble built on a complete set of charges correctly describes the long-time limit of local observables, it has been shown recently by Ilievski et al. that the corresponding canonical ensemble is not well defined, and instead a different canonical ensemble was proposed in terms of particle occupation number operators. Here we provide an alternative construction by considering truncated GGEs (tGGEs) that include only a finite number of local and quasi-local conserved operators. It is shown that the tGGEs can approximate the steady states with arbitrary precision, i.e. all physical observables are exactly reproduced in the infinite truncation limit. We trace back the problems encountered in defining an untruncated GGE to the dependence of the associated Lagrange multipliers on the truncation index. Conversely, we show that this problem may be circumvented by considering a new set of (quasi)local charges which are linear combinations of the standard ones, and whose associated Lagrange multipliers are well-defined state functions. Our general arguments are applied to concrete quench situations in the XXZ chain, where the initial states are simple two-site or four-site product states. Depending on the quench we find that numerical results for the local correlators can be obtained with remarkable precision using truncated GGEs with only 10-100 charges.

MSC:

82C23 Exactly solvable dynamic models in time-dependent statistical mechanics
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Colloquium: nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863-83 · doi:10.1103/RevModPhys.83.863
[2] Eisert J, Friesdorf M and Gogolin C 2015 Quantum many-body systems out of equilibrium Nat. Phys.11 124-30 · doi:10.1038/nphys3215
[3] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys.80 885-964 · doi:10.1103/RevModPhys.80.885
[4] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 One dimensional bosons: from condensed matter systems to ultracold gases Rev. Mod. Phys.83 1405-66 · doi:10.1103/RevModPhys.83.1405
[5] Guan X-W, Batchelor M T and Lee C 2013 Fermi gases in one dimension: from Bethe ansatz to experiments Rev. Mod. Phys.85 1633-91 · doi:10.1103/RevModPhys.85.1633
[6] Batchelor M T and Foerster A 2016 Yang-Baxter integrable models in experiments: from condensed matter to ultracold atoms J. Phys. A: Math. Theor.49 173001 · Zbl 1342.82017 · doi:10.1088/1751-8113/49/17/173001
[7] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett.98 050405 · doi:10.1103/PhysRevLett.98.050405
[8] Rigol M, Muramatsu A and Olshanii M 2006 Hard-core bosons on optical superlattices: dynamics and relaxation in the superfluid and insulating regimes Phys. Rev. A 74 053616 · doi:10.1103/PhysRevA.74.053616
[9] Gramsch C and Rigol M 2012 Quenches in a quasidisordered integrable lattice system: dynamics and statistical description of observables after relaxation Phys. Rev. A 86 053615 · doi:10.1103/PhysRevA.86.053615
[10] Cassidy A C, Clark C W and Rigol M 2011 Generalized thermalization in an integrable lattice system Phys. Rev. Lett.106 140405 · doi:10.1103/PhysRevLett.106.140405
[11] Essler F H L and Fagotti M 2016 Quench dynamics and relaxation in isolated integrable quantum spin chains J. Stat. Mech. 064002 · Zbl 1456.82585 · doi:10.1088/1742-5468/2016/06/064002
[12] Vidmar L and Rigol M 2016 Generalized Gibbs ensemble in integrable lattice models J. Stat. Mech. 064007 · Zbl 1456.81118 · doi:10.1088/1742-5468/2016/06/064007
[13] Langen T, Erne S, Geiger R, Rauer B, Schweigler T, Kuhnert M, Rohringer W, Mazets I E, Gasenzer T and Schmiedmayer J 2015 Experimental observation of a generalized Gibbs ensemble Science348 207-11 · Zbl 1355.81184 · doi:10.1126/science.1257026
[14] Pozsgay B 2013 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. 3 · Zbl 1456.82311 · doi:10.1088/1742-5468/2013/07/P07003
[15] Fagotti M and Essler F H L 2013 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. 12 · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/P07012
[16] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-12 Heisenberg XXZ chain Phys. Rev. B 89 125101 · doi:10.1103/PhysRevB.89.125101
[17] Wouters B, De Nardis J, Brockmann M, Fioretto D, Rigol M and Caux J-S 2014 Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions Phys. Rev. Lett.113 117202 · doi:10.1103/PhysRevLett.113.117202
[18] Pozsgay B, Mestyán M, Werner M A, Kormos M, Zaránd G and Takács G 2014 Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble Phys. Rev. Lett.113 117203 · doi:10.1103/PhysRevLett.113.117203
[19] Caux J-S and Essler F H L 2013 Time evolution of local observables after quenching to an integrable model Phys. Rev. Lett.110 257203 · doi:10.1103/PhysRevLett.110.257203
[20] Pozsgay B 2014 Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states J. Stat. Mech. P06011 · Zbl 1456.82313 · doi:10.1088/1742-5468/2014/06/P06011
[21] Kozlowski K K and Pozsgay B 2012 Surface free energy of the open XXZ spin-1/2 chain J. Stat. Mech. 21 · Zbl 1456.82283 · doi:10.1088/1742-5468/2012/05/P05021
[22] Brockmann M, De Nardis J, Wouters B and Caux J-S 2014 A Gaudin-like determinant for overlaps of Néel and XXZ Bethe states J. Phys. A: Math. Theor.47 145003 · Zbl 1290.82003 · doi:10.1088/1751-8113/47/14/145003
[23] Brockmann M, De Nardis J, Wouters B and Caux J-S 2014 Néel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit J. Phys A: Math. Theor47 345003 · Zbl 1301.81079 · doi:10.1088/1751-8113/47/34/345003
[24] Ilievski E, De Nardis J, Wouters B, Caux J-S, Essler F H L and Prosen T 2015 Complete generalized Gibbs ensembles in an interacting theory Phys. Rev. Lett.115 157201 · doi:10.1103/PhysRevLett.115.157201
[25] Ilievski E, Medenjak M, Prosen T and Zadnik L 2016 Quasilocal charges in integrable lattice systems J. Stat. Mech. 064008 · Zbl 1456.81238 · doi:10.1088/1742-5468/2016/06/064008
[26] Ilievski E, Quinn E and Caux J-S 2016 From interacting particles to equilibrium statistical ensembles Phys. Rev. B 95 115128 · doi:10.1103/PhysRevB.95.115128
[27] Fagotti M and Essler F H L 2013 Reduced density matrix after a quantum quench Phys. Rev. B 87 245107 · doi:10.1103/PhysRevB.87.245107
[28] Kollar M and Eckstein M 2008 Relaxation of a one-dimensional Mott insulator after an interaction quench Phys. Rev. A 78 013626 · doi:10.1103/PhysRevA.78.013626
[29] Rigol M, Dunjko V and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854-8 · doi:10.1038/nature06838
[30] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046-9 · doi:10.1103/PhysRevA.43.2046
[31] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888-901 · doi:10.1103/PhysRevE.50.888
[32] Sotiriadis S and Calabrese P 2014 Validity of the GGE for quantum quenches from interacting to noninteracting models J. Stat. Mech. P07024 · Zbl 1456.82024 · doi:10.1088/1742-5468/2014/07/P07024
[33] Ilievski E, Quinn E, De Nardis J and Brockmann M 2016 String-charge duality in integrable lattice models J. Stat. Mech. 063101 · Zbl 1456.82050 · doi:10.1088/1742-5468/2016/06/063101
[34] De Luca A, Collura M and De Nardis J 2016 Non-equilibrium spin transport in the XXZ chain: steady spin currents and emergence of magnetic domains Phys. Rev. B 96 020403(R) · doi:10.1103/PhysRevB.96.020403
[35] Korepin V, Bogoliubov N and Izergin A 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press) · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[36] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press) · Zbl 0998.82503 · doi:10.1017/CBO9780511524332
[37] Ilievski E, Medenjak M and Prosen T 2015 Quasilocal conserved operators in the isotropic Heisenberg Spin-1/2 chain Phys. Rev. Lett.115 120601 · doi:10.1103/PhysRevLett.115.120601
[38] Piroli L, Vernier E and Calabrese P 2016 Exact steady states for quantum quenches in integrable Heisenberg spin chains Phys. Rev. B 94 054313 · doi:10.1103/PhysRevB.94.054313
[39] Piroli L, Vernier E, Calabrese P and Rigol M 2017 Correlations and diagonal entropy after quantum quenches in XXZ chains Phys. Rev. B 95 054308 · doi:10.1103/PhysRevB.95.054308
[40] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction Phys. Rev. Lett.19 1312-5 · Zbl 0152.46301 · doi:10.1103/PhysRevLett.19.1312
[41] Baxter R J 1982 Exactly solved models in statistical mechanics (London: Academic) · Zbl 0538.60093
[42] Lüscher M 1976 Dynamical charges in the quantized renormalized massive thirring model Nucl. Phys. B 117 475-92 · doi:10.1016/0550-3213(76)90410-7
[43] Doyon B, Lucas A, Schalm K and Bhaseen M J 2015 Non-equilibrium steady states in the Klein-Gordon theory J. Phys. A: Math. Theor.48 095002 · Zbl 1312.82014 · doi:10.1088/1751-8113/48/9/095002
[44] Takahashi M, Shiroishi M and Klümper A 2001 Equivalence of TBA and QTM J. Phys. A: Math. Gen.34 L187 · Zbl 1063.82011 · doi:10.1088/0305-4470/34/13/105
[45] Mestyán M and Pozsgay B 2014 Short distance correlators in the XXZ spin chain for arbitrary string distributions J. Stat. Mech. 20 · doi:10.1088/1742-5468/2014/09/P09020
[46] Vernier E and Cubero A C 2017 Quasilocal charges and progress towards the complete GGE for field theories with nondiagonal scattering J. Stat. Mech. 023101 · Zbl 1456.81449 · doi:10.1088/1742-5468/aa5288
[47] Brockmann M, Wouters B, Fioretto D, De Nardis J, Vlijm R and Caux J-S 2014 Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain J. Stat. Mech. 12009 · Zbl 1456.82233 · doi:10.1088/1742-5468/2014/12/P12009
[48] Mestyán M, Pozsgay B, Takács G and Werner M A 2015 Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble J. Stat. Mech. 1 · Zbl 1456.82298 · doi:10.1088/1742-5468/2015/04/P04001
[49] Piroli L, Pozsgay B and Vernier E 2017 From the quantum transfer matrix to the Quench action: the Loschmidt echo in XXZ Heisenberg spin chains J. Stat. Mech. 023106 · Zbl 1456.81469 · doi:10.1088/1742-5468/aa5d1e
[50] Remling C 2014 When does a real function together with its derivatives form a basis? Mathematics stack exchange http://math.stackexchange.com/q/876492
[51] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett.91 147902 · doi:10.1103/PhysRevLett.91.147902
[52] Vidal G 2004 Efficient simulation of one-dimensional quantum many-body systems Phys. Rev. Lett.93 040502 · doi:10.1103/PhysRevLett.93.040502
[53] Vidal G 2007 Classical simulation of infinite-size quantum lattice systems in one spatial dimension Phys. Rev. Lett.98 070201 · doi:10.1103/PhysRevLett.98.070201
[54] Yang C N and Yang C P 1969 Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction J. Math. Phys.10 1115 · Zbl 0987.82503 · doi:10.1063/1.1664947
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.