×

Quantum quenches in integrable field theories. (English) Zbl 1375.81169

Summary: We study the non-equilibrium time evolution of an integrable field theory in 1+1 dimensions after sudden variation of a global parameter of the Hamiltonian. For a class of quenches defined in the text, we compute the long time limit of the one point function of a local operator as a series of form factors. Even if some subtleties force us to handle this result with care, there is strong evidence that for long times the expectation value of any local operator can be described by a generalized Gibbs ensemble with a different effective temperature for each eigenmode.

MSC:

81T10 Model quantum field theories
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Greiner M, Mandel O, Hansch T W and Bloch I 2002 Collapse and revival of the matter wave field of a Bose-Einstein condensate Nature419 51-4 · doi:10.1038/nature00968
[2] Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton’s cradle Nature440 900-3 · doi:10.1038/nature04693
[3] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate Nature443 312-5 · doi:10.1038/nature05094
[4] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Non-equilibrium coherence dynamics in one-dimensional Bose gases Nature449 324-7 · doi:10.1038/nature06149
[5] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett.98 050405 · doi:10.1103/PhysRevLett.98.050405
[6] Rigol M, Muramatsu A and Olshanii M 2006 Hard-core bosons on optical superlattices: dynamics and relaxation in the superfluid and insulating regimes Phys. Rev. A 74 053616 · doi:10.1103/PhysRevA.74.053616
[7] Cazalilla M A 2006 Effect of suddenly turning on interactions in the luttinger model Phys. Rev. Lett.97 156403 · doi:10.1103/PhysRevLett.97.156403
[8] Gangardt D M and Pustilnik M 2008 Correlations in an expanding gas of hard-core bosons Phys. Rev. A 77 041604 · doi:10.1103/PhysRevA.77.041604
[9] Eckstein M and Kollar M 2008 Nonthermal steady states after an interaction quench in the Falicov-Kimball model Phys. Rev. Lett.100 120404 · doi:10.1103/PhysRevLett.100.120404
[10] Iucci A and Cazalilla M A 2009 Quantum quench dynamics of some exactly solvable models in one dimension arXiv: 0903.1205v2 · Zbl 1375.82063
[11] Sotiriadis S, Calabrese P and Cardy J 2009 Quantum quench from a thermal initial state Europhys. Lett.87 20002 · doi:10.1209/0295-5075/87/20002
[12] Barthel T and Schollwöck U 2008 Dephasing and the steady state in quantum many-particle systems Phys. Rev. Lett.100 100601 · doi:10.1103/PhysRevLett.100.100601
[13] Calabrese P and Cardy J 2007 Quantum quenches in extended systems J. Stat. Mech. Theory Exp.2007 P06008 · Zbl 1456.81358 · doi:10.1088/1742-5468/2007/06/P06008
[14] Sutherland B 2004 Beautiful Models: 70 years of Exactly Solved Quantum Many-Body Problems (Singapore: World Scientific) · Zbl 1140.82016 · doi:10.1142/5552
[15] Zamolodchikov A B and Zamolodchikov A B 1979 Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models Ann. Phys.120 253-91 · doi:10.1016/0003-4916(79)90391-9
[16] Biroli G, Kollath C and Laeuchli A 2009 Does thermalization occur in an isolated system after a global quantum quench? arXiv:0907.3731
[17] Roux G 2009 Finite size effects in global quantum quenches: examples from free bosons in an harmonic trap and the one-dimensional Bose-Hubbard model arXiv:0909.4620v2
[18] Gritsev V, Demler E, Lukin M and Polkovnikov A 2007 Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics Phys. Rev. Lett.99 200404 · doi:10.1103/PhysRevLett.99.200404
[19] Faribault A, Calabrese P and Caux J-S 2009 Quantum quenches from integrability: the fermionic pairing model J. Stat. Mech. Theory Exp.2009 P03018 · doi:10.1088/1742-5468/2009/03/P03018
[20] Mussardo G 2009 Statistical Field Theory, An Introduction to Exactly Solved Models in Statistical Physics (Oxford: Oxford University Press)
[21] Smirnov F 1992 Form Factors in Completely Integrable Models of Quantum Field Theory (Singapore: World Scientific) · Zbl 0788.46077 · doi:10.1142/1115
[22] Kormos M, Mussardo G and Trombettoni A 2009 Expectation values in the Lieb-Liniger Bose gas Phys. Rev. Lett.103 210404 · doi:10.1103/PhysRevLett.103.210404
[23] Kormos M, Mussardo G and Trombettoni A 2009 1D Lieb-Liniger Bose gas as non-relativistic limit of the Sinh-Gordon model arXiv:0912.3502
[24] Yurov V P and Zamolodchikov A B 1991 Correlation functions of integrable 2d models of the relativistic field theory: Ising model Int. J. Mod. Phys. A 6 3419-40 · doi:10.1142/S0217751X91001660
[25] LeClair A and Mussardo G 1999 Finite temperature correlation functions in integrable QFT Nucl. Phys. B 552 624 · Zbl 0951.81065 · doi:10.1016/S0550-3213(99)00280-1
[26] Balog J 1994 Field theoretical derivation of the TBA integral equation Nucl. Phys. B 419 480 · Zbl 0990.82503 · doi:10.1016/0550-3213(94)90341-7
[27] Saleur H 2000 A comment on finite temperature correlations in integrable QFT Nucl. Phys. B 567 602-10 · Zbl 0951.81067 · doi:10.1016/S0550-3213(99)00665-3
[28] Lukyanov S 2001 Finite temperature expectation values of local fields in the sinh-Gordon model Nucl. Phys. B 612 391-412 · Zbl 0970.81041 · doi:10.1016/S0550-3213(01)00365-0
[29] Mussardo G 2001 On the finite temperature formalism in integrable quantum field theories J. Phys. A: Math. Gen.34 7399-410 · Zbl 1006.81092 · doi:10.1088/0305-4470/34/36/319
[30] Pozsgay B and Takacs G 2008 Form factors in finite volume I: form factor bootstrap and truncated conformal space Nucl. Phys. B 788 167-2008 · Zbl 1220.81161 · doi:10.1016/j.nuclphysb.2007.06.027
[31] Pozsgay B and Takacs G 2008 Form factors in finite volume II: disconnected terms and finite temperature correlators Nucl. Phys. B 788 209-51 · Zbl 1220.81162 · doi:10.1016/j.nuclphysb.2007.07.008
[32] Pozsgay B Finite volume form factors and correlation functions at finite temperature;. http://arxiv.org/abs/0907.4306 · Zbl 1190.81129
[33] Calabrese P and Cardy J 2006 Time dependence of correlation functions following a quantum quench Phys. Rev. Lett.96 136801 · doi:10.1103/PhysRevLett.96.136801
[34] Ghoshal S and Zamolodchikov A 1994 Boundary S matrix and boundary state in two-dimensional integrable quantum field theory Int. J. Mod. Phys. A 9 3841-85 · Zbl 0985.81714 · doi:10.1142/S0217751X94001552
[35] Barouch E, McCoy B M and Dresden M 1970 Statistical mechanics of the XY model. I. Phys. Rev. A 2 1075-92 · doi:10.1103/PhysRevA.2.1075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.