×

A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states. (English) Zbl 1375.82060

Summary: We prove that quantum many-body systems on a one-dimensional lattice locally relax to Gaussian states under non-equilibrium dynamics generated by a bosonic quadratic Hamiltonian. This is true for a large class of initial states – pure or mixed – which have to satisfy merely weak conditions concerning the decay of correlations. The considered setting is a proven instance of a situation where dynamically evolving closed quantum systems locally appear as if they had truly relaxed, to maximum entropy states for fixed second moments. This furthers the understanding of relaxation in suddenly quenched quantum many-body systems. The proof features a non-commutative central limit theorem for non-i.i.d. random variables, showing convergence to Gaussian characteristic functions, giving rise to trace-norm closeness. We briefly link our findings to the ideas of typicality and concentration of measure.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Lanford O E III and Robinson D W 1972 Commun. Math. Phys.24 193 · doi:10.1007/BF01877712
[2] Dudnikova T V, Komech A I and Spohn H 2003 J. Math. Phys.44 2596 · Zbl 1062.82029 · doi:10.1063/1.1571658
[3] Dudnikova T V and Spohn H 2006 Markov Process. Relat. Fields12 645 · Zbl 1133.82315
[4] McCoy B M and Barouch E 1971 Phys. Rev. A 3 786 · doi:10.1103/PhysRevA.3.786
[5] Tegmark M and Yeh L 1994 Physica A 202 342 · doi:10.1016/0378-4371(94)90181-3
[6] Barthel T and Schollwöck U 2008 Phys. Rev. Lett.100 100601 · doi:10.1103/PhysRevLett.100.100601
[7] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Phys. Rev. Lett.100 030602 · doi:10.1103/PhysRevLett.100.030602
[8] Calabrese P and Cardy J 2006 Phys. Rev. Lett.96 136801 · doi:10.1103/PhysRevLett.96.136801
[9] Sengupta K, Powell S and Sachdev S 2004 Phys. Rev. A 69 053616 · doi:10.1103/PhysRevA.69.053616
[10] Möckel M and Kehrein S 2008 Phys. Rev. Lett.100 175702 · doi:10.1103/PhysRevLett.100.175702
[11] Kollath C, Läuchli A M and Altman E 2007 Phys. Rev. Lett.98 180601 · doi:10.1103/PhysRevLett.98.180601
[12] Flesch A, Cramer M, McCulloch I P, Schollwöck U and Eisert J 2008 Phys. Rev. A 78 033608 · doi:10.1103/PhysRevA.78.033608
[13] Barmettler P, Rey A M, Demler E A, Lukin M D, Bloch I and Gritsev V 2008 Phys. Rev. A 78 012330 · doi:10.1103/PhysRevA.78.012330
[14] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett.98 050405 · doi:10.1103/PhysRevLett.98.050405
[15] Cramer M and Eisert J L in preparation
[16] Guetschow J, Uphoff S, Werner R F and Zimboras Z 2010 J. Math. Phys.51 015203 · Zbl 1245.81020 · doi:10.1063/1.3278513
[17] Goldstein S, Lebowitz J L, Tumulka R and Zanghi N 2006 Phys. Rev. Lett.96 050403 · doi:10.1103/PhysRevLett.96.050403
[18] Popescu S, Short A J and Winter A 2006 Nat. Phys.2 754 · doi:10.1038/nphys444
[19] Reimann P 2008 Phys. Rev. Lett.101 190403 · doi:10.1103/PhysRevLett.101.190403
[20] Lieb E H and Robinson D W 1972 Commun. Math. Phys.28 251 · doi:10.1007/BF01645779
[21] Nachtergaele B, Ogata Y and Sims R 2006 J. Stat. Phys.124 1 · Zbl 1194.82058 · doi:10.1007/s10955-006-9143-6
[22] Hastings M B and Koma T 2006 Commun. Math. Phys.265 781 · Zbl 1104.82010 · doi:10.1007/s00220-006-0030-4
[23] Eisert J, Kramer M and Plenio M B 2010 Rev. Mod. Phys.82 277 · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[24] Cramer M, Serafini A and Eisert J 2008 Quantum Information and Many Body Quantum Systems ed M Ericsson and S Montangero (Pisa: Edizioni della Normale) pp 51-72 (Publications of the Scuola Normale Superiore. CRM Series 8)
[25] Nachtergaele B, Raz H, Schlein B and Sims R 2007 arXiv:0712.3820
[26] Wolf M M, Giedke G and Cirac J I 2006 Phys. Rev. Lett.96 080502 · doi:10.1103/PhysRevLett.96.080502
[27] Cushen C D and Hudson R L 1971 J. Appl. Probab.8 454 · Zbl 0224.60049 · doi:10.2307/3212170
[28] Davies E B 1972 Commun. Math. Phys.15 277 · Zbl 0184.54102 · doi:10.1007/BF01645529
[29] Davies E B 1972 Commun. Math. Phys.27 309 · doi:10.1007/BF01645518
[30] Winter A 1999 IEEE Trans. Inform. TheoryIT 45 2481 · Zbl 0965.94007 · doi:10.1109/18.796385
[31] Landau L 2000 Electron. J. Diff. Eqns, Conf.04 147 · Zbl 0976.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.