×

Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble. (English) Zbl 1456.82298

Summary: Following our previous work [B. Pozsgay et al., “Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble”, Phys. Rev. Lett. 113, Article ID 117203, 5 p. (2014)] we present here a detailed comparison of the quench action approach and the predictions of the generalized Gibbs ensemble, with the result that while the quench action formalism correctly captures the steady state, the GGE does not give a correct description of local short-distance correlation functions. We extend our studies to include another initial state, the so-called q-dimer state. We present important details of our construction, including new results concerning exact overlaps for the dimer and q-dimer states, and we also give an exact solution of the quench-action-based overlap-TBA for the q-dimer. Furthermore, we extend our computations to include the xx spin correlations besides the zz correlations treated previously, and give a detailed discussion of the underlying reasons for the failure of the GGE, especially in the light of new developments.

MSC:

82B23 Exactly solvable models; Bethe ansatz

References:

[1] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Colloquium: nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863-83 (arXiv:1007.5331 [cond-mat.stat-mech]) · doi:10.1103/RevModPhys.83.863
[2] Kollath C, Läuchli A M and Altman E 2007 Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model Phys. Rev. Lett.98 180601 (cond-mat/0607235) · doi:10.1103/PhysRevLett.98.180601
[3] Rigol M, Dunjko V and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854-8 (arXiv:0708.1324 [cond-mat.stat-mech]) · doi:10.1038/nature06838
[4] Barthel T and Schollwöck U 2008 Dephasing and the steady state in quantum many-particle systems Phys. Rev. Lett.100 100601 (arXiv:0711.4896 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.100.100601
[5] Rigol M 2009 Breakdown of thermalization in finite one-dimensional systems Phys. Rev. Lett.103 100403 (arXiv:0904.3746 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.103.100403
[6] Cramer M and Eisert J 2010 A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states New J. Phys.12 055020 (arXiv:0911.2475 [quant-ph]) · Zbl 1375.82060 · doi:10.1088/1367-2630/12/5/055020
[7] Santos L F and Rigol M 2010 Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization Phys. Rev. E 81 036206 (arXiv:0910.2985 [cond-mat.stat-mech]) · doi:10.1103/PhysRevE.81.036206
[8] Barmettler P, Punk M, Gritsev V, Demler E and Altman E 2010 Quantum quenches in the anisotropic spin- Heisenberg chain: different approaches to many-body dynamics far from equilibrium New J. Phys.12 055017 (arXiv:0911.1927 [cond-mat.quant-gas]) · doi:10.1088/1367-2630/12/5/055017
[9] Bañuls M C, Cirac J I and Hastings M B 2011 Strong and weak thermalization of infinite nonintegrable quantum systems Phys. Rev. Lett.106 050405 (arXiv:1007.3957 [quant-ph]) · doi:10.1103/PhysRevLett.106.050405
[10] Calabrese P, Essler F H L and Fagotti M 2011 Quantum quench in the transverse-field Ising chain Phys. Rev. Lett.106 227203 (arXiv:1104.0154 [cond-mat.str-el]) · doi:10.1103/PhysRevLett.106.227203
[11] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators J. Stat. Mech. P07016 (arXiv:1204.3911 [cond-mat.quant-gas]) · doi:10.1088/1742-5468/2012/07/P07016
[12] Sedlmayr N, Ren J, Gebhard F and Sirker J 2013 Closed and open system dynamics in a fermionic chain with a microscopically specified bath: relaxation and thermalization Phys. Rev. Lett.110 100406 (arXiv:1212.0223 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.110.100406
[13] Marcuzzi M, Marino J, Gambassi A and Silva A 2013 Prethermalization in a nonintegrable quantum spin chain after a quench Phys. Rev. Lett.111 197203 (arXiv:1307.3738 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.111.197203
[14] Iyer D, Guan H and Andrei N 2013 Exact formalism for the quench dynamics of integrable models Phys. Rev. A 87 053628 (arXiv:1304.0506 [cond-mat.quant-gas]) · doi:10.1103/PhysRevA.87.053628
[15] Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton’s cradle Nature440 900-3 · doi:10.1038/nature04693
[16] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Light-cone-like spreading of correlations in a quantum many-body system Nature481 484-7 (arXiv:1111.0776 [cond-mat.quant-gas]) · doi:10.1038/nature10748
[17] Trotzky S, Chen Y-A, Flesch A, McCulloch I P, Schollwöck U, Eisert J and Bloch I 2012 Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas Nat. Phys.8 325-30 (arXiv:1101.2659 [cond-mat.quant-gas]) · doi:10.1038/nphys2232
[18] Fukuhara T, Schauß P, Endres M, Hild S, Cheneau M, Bloch I and Gross C 2013 Microscopic observation of magnon bound states and Their dynamics Nature502 76-9 (arXiv:1305.6598 [cond-mat.quant-gas]) · doi:10.1038/nature12541
[19] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio98 050405 study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett. (cond-mat/0604476) · doi:10.1103/PhysRevLett.98.050405
[20] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press) · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[21] Cazalilla M A 2006 Effect of suddenly turning on interactions in the Luttinger model Phys. Rev. Lett.97 156403 (cond-mat/0606236) · doi:10.1103/PhysRevLett.97.156403
[22] Rossini D, Silva A, Mussardo G and Santoro G E 2009 Effective thermal dynamics following a quantum quench in a spin chain Phys. Rev. Lett.102 127204 (arXiv:0810.5508 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.102.127204
[23] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quenches in the transverse field Ising chain: II. Stationary state properties J. Stat. Mech. P07022 (arXiv:1205.2211 [cond-mat.stat-mech]) · doi:10.1088/1742-5468/2012/07/P07022
[24] Cazalilla M A, Iucci A and Chung M -C 2012 Thermalization and quantum correlations in exactly solvable models Phys. Rev. E 85 011133 (arXiv:1106.5206 [cond-mat.stat-mech]) · doi:10.1103/PhysRevE.85.011133
[25] Gurarie V 2013 Global large time dynamics and the generalized Gibbs ensemble J. Stat. Mech. P02014 (arXiv:1209.3816 [cond-mat.stat-mech]) · Zbl 1456.82588 · doi:10.1088/1742-5468/2013/02/P02014
[26] Fagotti M and Essler F H L 2013 Reduced density matrix after a quantum quench Phys. Rev. B 87 245107 (arXiv:1302.6944 [cond-mat.stat-mech]) · doi:10.1103/PhysRevB.87.245107
[27] Fagotti M 2014 On conservation laws, relaxation and pre-relaxation after a quantum quench J. Stat. Mech. P03016 (arXiv:1401.1064 [cond-mat.stat-mech]) · Zbl 1456.81232 · doi:10.1088/1742-5468/2014/03/P03016
[28] Collura M, Sotiriadis S and Calabrese P 2013 Equilibration of a Tonks-Girardeau gas following a trap release Phys. Rev. Lett.110 245301 (arXiv:1303.3795 [cond-mat.quant-gas]) · doi:10.1103/PhysRevLett.110.245301
[29] Kormos M, Collura M and Calabrese P 2014 Analytic results for a quantum quench from free to hard-core one-dimensional bosons Phys. Rev. A 89 013609 (arXiv:1307.2142 [cond-mat.quant-gas]) · doi:10.1103/PhysRevLett.110.245301
[30] Sotiriadis S and Calabrese P 2014 Validity of the GGE for quantum quenches from interacting to noninteracting models J. Stat. Mech. P07024 (arXiv:1403.7431 [cond-mat.stat-mech]) · Zbl 1456.82024 · doi:10.1088/1742-5468/2014/07/P07024
[31] Cassidy A C, Clark C W and Rigol M 2011 Generalized thermalization in an integrable lattice system Phys. Rev. Lett.106 140405 (arXiv:1008.4794 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.106.140405
[32] Wright T M, Rigol M, Davis M J and Kheruntsyan K V 2014 Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables Phys. Rev. Lett.113 050601 (arXiv:1312.4657 [cond-mat.quant-gas]) · doi:10.1103/PhysRevLett.113.050601
[33] Caux J-S and Konik R M 2012 Constructing the generalized Gibbs ensemble after a quantum quench Phys. Rev. Lett.109 175301 (arXiv:1203.0901 [cond-mat.quant-gas]) · doi:10.1103/PhysRevLett.113.050601
[34] Kormos M, Shashi A, Chou Y-Z, Caux J-S and Imambekov A 2013 Interaction quenches in the one-dimensional Bose gas Phys. Rev. B 88 205131 (arXiv:1305.7202 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.113.050601
[35] De Nardis J, Wouters B, Brockmann M and Caux J-S 2014 Solution for an interaction quench in the Lieb-Liniger Bose gas Phys. Rev. A 89 033601 (arXiv:1308.4310 [cond-mat.stat-mech]) · doi:10.1103/PhysRevA.89.033601
[36] Pozsgay B 2013 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. P07003 (arXiv:1304.5374 [cond-mat.stat-mech]) · Zbl 1456.82311 · doi:10.1088/1742-5468/2013/07/P07003
[37] Fagotti M and Essler F H L 2013 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. P07012 (arXiv:1305.0468 [cond-mat.stat-mech]) · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/P07012
[38] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain Phys. Rev. B 89 125101 (arXiv:1311.5216 [cond-mat.stat-mech]) · doi:10.1103/PhysRevB.89.125101
[39] Fioretto D and Mussardo G 2010 Quantum quenches in integrable field theories New J. Phys.12 055015 (arXiv:0911.3345 [cond-mat.stat-mech]) · Zbl 1375.81169 · doi:10.1088/1367-2630/12/5/055015
[40] Mussardo G 2013 Infinite-time average of local fields in an integrable quantum field theory after a quantum quench Phys. Rev. Lett.111 100401 (arXiv:1308.4551 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.111.100401
[41] Sotiriadis S, Takacs G and Mussardo G 2014 Boundary state in an integrable quantum field theory out of equilibrium Phys. Lett. B 734 52-7 (arXiv:1311.4418 [cond-mat.stat-mech]) · doi:10.1016/j.physletb.2014.04.058
[42] Caux J-S and Essler F H L 2013 Time evolution of local observables after quenching to an integrable model Phys. Rev. Lett.110 257203 (arXiv:1301.3806) · doi:10.1103/PhysRevLett.110.257203
[43] De Luca A, Martelloni G and Viti J 2015 Stationary states in a free fermionic chain from the quench action method Phys. Rev. A 91 021603 (arXiv:1409.8482 [cond-mat.stat-mech]) · doi:10.1103/PhysRevA.91.021603
[44] Kozlowski K K and Pozsgay B 2012 Surface free energy of the open XXZ spin-1/2 chain J. Stat. Mech. P05021 (arXiv:1201.5884 [nlin.SI]) · Zbl 1456.82283 · doi:10.1088/1742-5468/2012/05/P05021
[45] Pozsgay B 2014 Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states J. Stat. Mech. P06011 · Zbl 1456.82313 · doi:10.1088/1742-5468/2014/06/P06011
[46] Brockmann M, De Nardis J, Wouters B and Caux J-S 2014 A Gaudin-like determinant for overlaps of Néel and XXZ Bethe states J. Phys. A 47 145003 (arXiv:1401.2877 [cond-mat.stat-mech]) · Zbl 1290.82003 · doi:10.1088/1751-8113/47/14/145003
[47] Brockmann M 2014 Overlaps of q-raised Néel states with XXZ Bethe states and Their relation to the Lieb-Liniger Bose gas J. Stat. Mech. P05006 (arXiv:1402.1471) · Zbl 1456.82232 · doi:10.1088/1742-5468/2014/05/P05006
[48] Wouters B, De Nardis J, Brockmann M, Fioretto D, Rigol M and Caux J-S 2014 Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions Phys. Rev. Lett.113 117202 (arXiv:1405.0172) · doi:10.1103/PhysRevLett.113.117202
[49] Pozsgay B, Mestyán M, Werner M A, Kormos M, Zaránd G and Takács G 2014 Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble Phys. Rev. Lett.113 117203 · doi:10.1103/PhysRevLett.113.117203
[50] Vidal G 2004 Efficient simulation of one-dimensional quantum many-body systems Phys. Rev. Lett.93 040502 (quant-ph/0310089) · doi:10.1103/PhysRevLett.93.040502
[51] Vidal G 2007 Classical simulation of infinite-size quantum lattice systems in one spatial dimension Phys. Rev. Lett.98 070201 (cond-mat/0605597) · doi:10.1103/PhysRevLett.98.070201
[52] Mestyán M and Pozsgay B 2014 Short distance correlators in the XXZ spin chain for arbitrary string distributions J. Stat. Mech. P09020 (arXiv:1405.0232) · doi:10.1088/1742-5468/2014/09/P09020
[53] Mierzejewski M, Prelovšek P and Prosen T 2014 Breakdown of the generalized Gibbs ensemble for current-generating quenches Phys. Rev. Lett.113 020602 (arXiv:1405.2557 [cond-mat.str-el]) · doi:10.1103/PhysRevLett.113.020602
[54] Pozsgay B 2013 The dynamical free energy and the Loschmidt echo for a class of quantum quenches in the Heisenberg spin chain J. Stat. Mech. P10028 · Zbl 1456.82067 · doi:10.1088/1742-5468/2013/10/P10028
[55] Goldstein G and Andrei N 2014 Failure of the GGE hypothesis for integrable models with bound states arXiv:1405.4224
[56] Pozsgay B 2014 Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species J. Stat. Mech. P09026 (arXiv:1406.4613 [cond-mat.stat-mech]) · Zbl 1456.82310 · doi:10.1088/1742-5468/2014/09/P09026
[57] Pozsgay B 2014 Quantum quenches and generalized Gibbs ensemble in a Bethe Ansatz solvable lattice model of interacting bosons J. Stat. Mech. P10045 (arXiv:1407.8344) · Zbl 1456.82312 · doi:10.1088/1742-5468/2014/10/P10045
[58] Bethe H A 1931 Zur theorie der metalle; 1, eigenwerte und eigenfunktionen der linearen atomkette Z. Phys.71 205-26 · Zbl 0002.37205 · doi:10.1007/BF01341708
[59] Orbach R 1958 Linear antiferromagnetic chain with anisotropic coupling Phys. Rev.112 309-16 · doi:10.1103/PhysRev.112.309
[60] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press) · Zbl 1046.82007 · doi:10.1017/CBO9780511524332
[61] Yang C N and Yang C P 1969 Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction J. Math. Phys.10 1115-22 · Zbl 0987.82503 · doi:10.1063/1.1664947
[62] Grabowski M P and Mathieu P 1994 Quantum integrals of motion for the Heisenberg spin chain Mod. Phys. Lett. A 9 2197-206 (hep-th/9403149) · Zbl 1020.82550 · doi:10.1142/S0217732394002057
[63] Brockmann M, Wouters B, Fioretto D, De Nardis J, Vlijm R and Caux J-S 2014 Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain J. Stat. Mech. P12009 (arXiv:1408.5075) · Zbl 1456.82233 · doi:10.1088/1742-5468/2014/12/P12009
[64] Fagotti M and Essler F H L 2013 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. P07012 (arXiv:1305.0468) · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/P07012
[65] Majumdar C K and Ghosh D K 1969 On next-nearest-neighbor interaction in linear chain. I J. Math. Phys.10 1388-98 · doi:10.1063/1.1664978
[66] Batchelor M T and Yung C M 1994 q-deformations of quantum spin chains with exact valence-bond ground states Int. J. Mod. Phys. B 08 3645-54 (arXiv:9403080 [cond-mat]) · Zbl 1264.82018 · doi:10.1142/S021797929400155X
[67] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain Phys. Rev. B 89 125101 arXiv:1311.5216 · doi:10.1103/PhysRevB.89.125101
[68] Fagotti M 2014 On conservation laws, relaxation and pre-relaxation after a quantum quench J. Stat. Mech. P03016 arXiv:1401.1064 · Zbl 1456.81232
[69] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio 98 050405 study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett. (arXiv:0604476 [cond-mat])
[70] Klümper A 1993 Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains Z. Phys. B: Condens. Matter91 507-19 (cond-mat/9306019) · doi:10.1007/BF01316831
[71] Klümper A 2004 Integrability of quantum chains: theory and applications to the spin-1/2 XXZ chain Quantum Magnetism(Lecture Notes in Physics vol 645) ed U Schollwöck (Berlin: Springer) p 349 (cond-mat/0502431) · doi:10.1007/BFb0119598
[72] Mossel J and Caux J-S 2012 Generalized TBA and generalized Gibbs J. Phys. A 45 255001 (arXiv:1203.1305 [cond-mat.quant-gas]) · Zbl 1243.82027 · doi:10.1088/1751-8113/45/25/255001
[73] Pozsgay B 2013 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. P07003 (arXiv:1304.5374) · Zbl 1456.82311
[74] Caux J-S and Essler F H L 2013 Time evolution of local observables after quenching to an integrable model Phys. Rev. Lett.110 257203 (arXiv:1301.3806 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.110.257203
[75] Brockmann M, De Nardis J, Wouters B and Caux J-S 2014 Néel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit J. Phys. A: Math. Theor.47 345003 (arXiv:1403.7469) · Zbl 1301.81079 · doi:10.1088/1751-8113/47/34/345003
[76] Kuniba A, Sakai K and Suzuki J 1998 Continued fraction TBA and functional relations in XXZ model at root of unity Nucl. Phys. B 525 597-626 · Zbl 1047.82514 · doi:10.1016/S0550-3213(98)00300-9
[77] Boos H E, Göhmann F, Klümper A and Suzuki J 2007 Factorization of the finite temperature correlation functions of the XXZ chain in a magnetic field J. Phys. A 40 10699-10727 (arXiv:0705.2716 [hep-th]) · Zbl 1147.82316 · doi:10.1088/1751-8113/40/35/001
[78] Trippe C, Göhmann F and Klümper A 2010 Short-distance thermal correlations in the massive XXZ chain Eur. Phys. J. B 73 253-64 (arXiv:0908.2232 [cond-mat.str-el]) · doi:10.1140/epjb/e2009-00417-7
[79] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046-9 · doi:10.1103/PhysRevA.43.2046
[80] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888-901 cond-mat/9403051 · doi:10.1103/PhysRevE.50.888
[81] Kim H, Ikeda T N and Huse D A 2015 Testing whether all eigenstates obey the eigenstate thermalization hypothesis Phys. Rev. E 90 052105 (arXiv:1408.0535 [cond-mat.stat-mech]) · doi:10.1103/PhysRevE.90.052105
[82] Kim H, Bañuls M C, Cirac J I, Hastings M B and Huse D A 2014 Slowest local operators in quantum spin chains arXiv:1410.4186 [cond-mat.stat-mech]
[83] Prosen T 2011 Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport Phys. Rev. Lett.106 217206 (arXiv:1103.1350 [cond-mat.str-el]) · doi:10.1103/PhysRevLett.106.217206
[84] Prosen T and Ilievski E 2013 Families of quasilocal conservation laws and quantum spin transport Phys. Rev. Lett.111 057203 (arXiv:1306.4498 [cond-mat.stat-mech]) · doi:10.1103/PhysRevLett.111.057203
[85] Prosen T 2014 Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions Nucl. Phys. B 886 1177-98 (arXiv:1406.2258 [math-ph]) · Zbl 1325.82015 · doi:10.1016/j.nuclphysb.2014.07.024
[86] Pereira R G, Pasquier V, Sirker J and Affleck I 2014 Exactly conserved quasilocal operators for the XXZ spin chain J. Stat. Mech. P09037 (arXiv:1406.2306 [cond-mat.stat-mech]) · Zbl 1456.82171 · doi:10.1088/1742-5468/2014/09/P09037
[87] Essler F H L, Mussardo G and Panfil M 2014 Generalized Gibbs ensembles for quantum field theories arXiv:1411.5352 [cond-mat.quant-gas]
[88] Langen T, Erne S, Geiger R, Rauer B, Schweigler T, Kuhnert M, Rohringer W, Mazets I E, Gasenzer T and Schmiedmayer J 2014 Experimental observation of a generalized Gibbs ensemble arXiv:1411.7185 [cond-mat.quant-gas]
[89] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys.326 96-192 (arXiv:1008.3477 [cond-mat.str-el]) · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.