×

A comparative review of peridynamics and phase-field models for engineering fracture mechanics. (English) Zbl 1505.74191

Summary: Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities, with their relative advantages and challenges are summarized.

MSC:

74R10 Brittle fracture
74A70 Peridynamics
74S99 Numerical and other methods in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
74-05 Experimental work for problems pertaining to mechanics of deformable solids

References:

[1] Hattori, G.; Trevelyan, J.; Augarde, CE; Coombs, WM; Aplin, AC, Numerical simulation of fracking in shale rocks: current state and future approaches, Arch Comput Method Eng, 24, 2, 281-317 (2017) · Zbl 1364.76221 · doi:10.1007/s11831-016-9169-0
[2] Silling S, Wick T, Ravi-Chandar K, Guilleminot J, Dolbow J, Finberg J, Diehl P, Prudhomme S, Lipton R, Seleson P (2020) Workshop on experimental and computational fracture mechanics 2020, Tech. Rep. ORNL/TM-2020/1714, Oak Ridge National Laboratory
[3] Javili, A.; Morasata, R.; Oterkus, E.; Oterkus, S., Peridynamics review, Math Mech Solids, 24, 11, 3714-3739 (2019) · Zbl 07273389 · doi:10.1177/1081286518803411
[4] Diehl, P.; Prudhomme, S.; Lévesque, M., A review of benchmark experiments for the validation of peridynamics models, J Peridyn Nonlocal Model, 1, 1, 14-35 (2019) · doi:10.1007/s42102-018-0004-x
[5] Isiet, M.; Mišković, I.; Mišković, S., Review of peridynamic modelling of material failure and damage due to impact, Int J Impact Eng, 147, 103740 (2021) · doi:10.1016/j.ijimpeng.2020.103740
[6] Hattori G, Hobbs M, Orr J (2021) A review on the developments of peridynamics for reinforced concrete structures, Archives of Computational Methods in Engineering, pp 1-32
[7] Zhou, X-P; Wang, Y-T, State-of-the-art review on the progressive failure characteristics of geomaterials in peridynamic theory, J Eng Mech, 147, 1, 03120001 (2021) · doi:10.1061/(ASCE)EM.1943-7889.0001876
[8] Hidayat MIP, Lemma TA, Machmudah A (2021) A review on connection between meshfree peridynamics and meshfree methods. In: AIP Conference Proceedings, vol. 2384, p 030006, AIP Publishing LL
[9] Bobaru, F.; Foster, JT; Geubelle, PH; Silling, SA, Handbook of peridynamic modeling (2016), Florida: CRC Press, Florida · Zbl 1351.74001 · doi:10.1201/9781315373331
[10] Madenci E, Oterkus E (2014) Peridynamic theory. In: Theory peridynamic, applications its (eds). Springer, Berlin, pp 19-43 · Zbl 1295.74001
[11] Gerstle, WH, Introduction to practical peridynamics: computational solid mechanics without stress and strain (2015), Singapore: World Scientific Publishing Company, Singapore · doi:10.1142/9687
[12] Bourdin, B.; Francfort, G.; Marigo, J-J, The variational approach to fracture, J Elasticity, 91, 1-3, 1-148 (2008) · Zbl 1176.74018
[13] Rabczuk, T., Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives, ISRN Appl Math, 2013, 38 (2013) · Zbl 1298.74002 · doi:10.1155/2013/849231
[14] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 2, 383-405 (2015) · Zbl 1398.74270 · doi:10.1007/s00466-014-1109-y
[15] Bourdin, B.; Francfort, GA, Past and present of variational fracture, SIAM News, 52, 9 (2019)
[16] Wu, J-Y; Nguyen, VP; Nguyen, CT; Sutula, D.; Sinaie, S.; Bordas, SP; Bordas, SP; Balint, DS, Chapter one - phase-field modeling of fracture, Advances in applied mechanics, 1-183 (2020), Amsterdam: Elsevier, Amsterdam
[17] Wick, T., Multiphysics phase-field fracture: modeling, adaptive discretizations, and solvers (2020), Berlin, Boston: De Gruyter, Berlin, Boston · Zbl 1448.74003 · doi:10.1515/9783110497397
[18] Francfort G (2021) Variational fracture: twenty years after. International Journal of Fracture, pp 1-11
[19] Crouch, S., Solution of plane elastic problem by the displacements discontinuity method, Int J Num Meth Eng, 10, 301-343 (1976) · Zbl 0322.73016 · doi:10.1002/nme.1620100206
[20] Xu, XP; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J Mech Phys Solids, 42, 1397-1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[21] Chang, C.; Mear, ME, A boundary element method for two dimensional linear elastic fracture analysis, Int J Fract, 74, 219-251 (1995) · doi:10.1007/BF00033829
[22] Fries, T-P; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int J Numer Meth Engrg, 84, 253-304 (2010) · Zbl 1202.74169 · doi:10.1002/nme.2914
[23] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput Methods Appl Mech Eng, 181, 1, 43-69 (2000) · Zbl 0983.65127 · doi:10.1016/S0045-7825(99)00072-9
[24] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Meth Engrg, 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[25] Stochino, F.; Qinami, A.; Kaliske, M., Eigenerosion for static and dynamic brittle fracture, Eng Fract Mech, 182, 537-551 (2017) · doi:10.1016/j.engfracmech.2017.05.025
[26] Pandolfi, A.; Ortiz, M., An eigenerosion approach to brittle fracture, Int J Numer Meth Eng, 92, 8, 694-714 (2012) · Zbl 1352.74299 · doi:10.1002/nme.4352
[27] Pandolfi, A.; Li, B.; Ortiz, M., Modeling fracture by material-point erosion, Int J Fract, 184, 1-2, 3-16 (2013) · doi:10.1007/s10704-012-9788-x
[28] Wang, K.; Sun, W., A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput Methods Appl Mech Eng, 318, 1-32 (2017) · Zbl 1439.74373 · doi:10.1016/j.cma.2017.01.017
[29] Cervera M, Barbat G, Chiumenti M, Wu J-Y (2021) A Comparative Review of XFEM, mixed FEM and Phase-Field Models for Quasi-brittle Cracking. Archives of Computational Methods in Engineering. doi:10.1007/s11831-021-09604-8
[30] Alder, BJ; Wainwright, TE, Studies in molecular dynamics. i. general method, J Chem Phys, 31, 2, 459-466 (1959) · doi:10.1063/1.1730376
[31] Gingold, RA; Monaghan, JJ, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 3, 375-389 (1977) · Zbl 0421.76032 · doi:10.1093/mnras/181.3.375
[32] Lucy, LB, A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024 (1977) · doi:10.1086/112164
[33] Cucker, F.; Smale, S., Emergent behavior in flocks, Trans Autom Control, 52, 852-862 (2007) · Zbl 1366.91116 · doi:10.1109/TAC.2007.895842
[34] Trygve AM, Karper K, Trivisa K (2015) Hydrodynamic limit of the kinetic cucker-smale flocking model. Mathematical Models and methods in the Applied Sciences M3AS, 25:131-163 · Zbl 1309.35180
[35] Figalli, A.; Kang, M-J, A rigorous derivation from the kinetic cucker-smale model to the pressureless euler system with nonlocal alignment, Anal PDE, 12, 3, 843-866 (2019) · Zbl 1405.35206 · doi:10.2140/apde.2019.12.843
[36] Shu, R.; Tadmor, E., Flocking hydrodynamics with external potentials, Arch Ration Mech Anal, 238, 347-1381 (2020) · Zbl 1448.76178 · doi:10.1007/s00205-020-01544-0
[37] Silling, S., Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[38] Silling, SA; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput Struct, 83, 17-18, 1526-1535 (2005) · doi:10.1016/j.compstruc.2004.11.026
[39] Kunin, IA, Elastic media with microstructure I: one-dimensional models (2012), Berlin: Springer Science & Business Media, Berlin
[40] Kunin IA (2012) Elastic media with microstructure II: three-dimensional models (Springer Series in Solid-State Sciences). Springer, softcover reprint of the original 1st ed. 1983 ed., 1
[41] Silling, SA; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J Elast, 88, 2, 151-184 (2007) · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[42] Zhang, Y.; Qiao, P., A new bond failure criterion for ordinary state-based peridynamic mode ii fracture analysis, Int J Fract, 215, 1-2, 105-128 (2019) · doi:10.1007/s10704-018-00341-x
[43] Dipasquale D, Shojaei A, Yooyen S (2020) A novel stress tensor-based failure criterion for peridynamics. In: Multidisciplinary Digital Publishing Institute Proceedings, 39:23
[44] Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. International Journal for Multiscale Computational Engineering, 9(6 )
[45] Willberg, C.; Wiedemann, L.; Rädel, M., A mode-dependent energy-based damage model for peridynamics and its implementation, J Mech Mater Struct, 14, 2, 193-217 (2019) · doi:10.2140/jomms.2019.14.193
[46] Lipton, R., Dynamic brittle fracture as a small horizon limit of peridynamics, J Elast, 117, 21-50 (2014) · Zbl 1309.74065 · doi:10.1007/s10659-013-9463-0
[47] Lipton, R., Cohesive dynamics and brittle fracture, J Elast, 124, 2, 143-191 (2016) · Zbl 1386.74127 · doi:10.1007/s10659-015-9564-z
[48] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problem, Commun Pure Appl Math, 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[49] Gobbino, M., Finite difference approximation of the mumford-shah functional, Commun Pure Appl Math, 51, 197-228 (1998) · Zbl 0888.49013 · doi:10.1002/(SICI)1097-0312(199802)51:2<197::AID-CPA3>3.0.CO;2-6
[50] Ganzenmueller, G.; Hiermaier, S.; May, M., Improvements to the prototype micro-brittle linear elasticity model of peridynamics, Lect Notes Comput Sci Eng, 100, 12 (2013)
[51] Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. International Journal for Multiscale Computational Engineering, 9(6)
[52] Hu, W.; Ha, YD; Bobaru, F., Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Comput Methods Appl Mech Eng, 217-220, 247-261 (2012) · Zbl 1253.74008 · doi:10.1016/j.cma.2012.01.016
[53] Kilic, B.; Madenci, E., Prediction of crack paths in a quenched glass plate by using peridynamic theory, Int J Fract, 156, 165-177 (2009) · Zbl 1273.74455 · doi:10.1007/s10704-009-9355-2
[54] Kilic B (2008) Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials. The University of Arizona
[55] Diehl P, Lipton R, Schweitzer M (2016) Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. Institut für Numerische Simulation Preprint, 1630
[56] Gerstle W, Sakhavand N, Chapman S (2010) Peridynamic and continuum models of reinforced concrete lap splice compared. Fracture Mechanics of Concrete and Concrete Structures-Recent Advances in Fracture Mechanics of Concrete
[57] Aziz A (2014) Simulation of fracture of concrete using micropolar peridynamics. Ph.D thesis, The University of New Mexico
[58] Silling, SA, Attenuation of waves in a viscoelastic peridynamic medium, Math Mech Solids, 24, 11, 3597-3613 (2019) · Zbl 07273384 · doi:10.1177/1081286519847241
[59] Hu, Y.; Madenci, E., Peridynamics for fatigue life and residual strength prediction of composite laminates, Compos Struct, 160, 169-184 (2017) · doi:10.1016/j.compstruct.2016.10.010
[60] Askari E, Xu J, Silling S (2006) Peridynamic analysis of damage and failure in composites. In: 44th AIAA aerospace sciences meeting and exhibit, p 88
[61] Hu, Y.; De Carvalho, N.; Madenci, E., Peridynamic modeling of delamination growth in composite laminates, Compos Struct, 132, 610-620 (2015) · doi:10.1016/j.compstruct.2015.05.079
[62] Mehrmashhadi, J.; Chen, Z.; Zhao, J.; Bobaru, F., A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites, Compos Sci Technol, 182, 107770 (2019) · doi:10.1016/j.compscitech.2019.107770
[63] Zhang, T.; Zhou, X., A modified axisymmetric ordinary state-based peridynamics with shear deformation for elastic and fracture problems in brittle solids, Eur J Mech A Solids, 77, 103810 (2019) · Zbl 1473.74009 · doi:10.1016/j.euromechsol.2019.103810
[64] Lai, X.; Liu, L.; Zeleke, M.; Liu, Q.; Wang, Z., A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials, Int J Impact Eng, 111, 01 (2018) · doi:10.1016/j.ijimpeng.2017.08.008
[65] Gao, Y.; Oterkus, S., Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems, Continuum Mech Thermodyn, 31, 4, 907-937 (2019) · doi:10.1007/s00161-018-0691-1
[66] Rahaman MM, Roy P, Roy D, Reddy J (2017) A peridynamic model for plasticity: Micro-inertia based flow rule, entropy equivalence and localization residuals,” Computer Methods in Applied Mechanics and Engineering, vol. 327, pp. 369-391, Advances in Computational Mechanics and Scientific Computation—the Cutting Edge · Zbl 1439.74075
[67] Kružík, M.; Mora-Corral, C.; Stefanelli, U., Quasistatic elastoplasticity via peridynamics: existence and localization, Continuum Mech Thermodyn, 30, 1155-1184 (2018) · Zbl 1396.74037 · doi:10.1007/s00161-018-0671-5
[68] Madenci, E.; Oterkus, S., Ordinary state-based peridynamics for plastic deformation according to von mises yield criteria with isotropic hardening, J Mech Phys Solids, 86, 192-219 (2016) · doi:10.1016/j.jmps.2015.09.016
[69] Kazemi, SR, Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory, Int J Impact Eng, 137, 103470 (2020) · doi:10.1016/j.ijimpeng.2019.103470
[70] Oterkus E (2010) Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures. Ph.D thesis, The University of Arizona
[71] Silling, SA; Parks, ML; Kamm, JR; Weckner, O.; Rassaian, M., Modeling shockwaves and impact phenomena with eulerian peridynamics, Int J Impact Eng, 107, 47-57 (2017) · doi:10.1016/j.ijimpeng.2017.04.022
[72] Mitchell, J.; Silling, S.; Littlewood, D., A position-aware linear solid constitutive model for peridynamics, J Mech Mater Struct, 10, 5, 539-557 (2015) · doi:10.2140/jomms.2015.10.539
[73] Weckner, O.; Mohamed, NAN, Viscoelastic material models in peridynamics, Appl Math Comput, 219, 11, 6039-6043 (2013) · Zbl 1273.74038 · doi:10.1016/j.amc.2012.11.090
[74] Mitchell JA (2011) A non-local, ordinary-state-basedviscoelasticity model forperidynamics. SANDIA REPORT, vol. SAND2011-806
[75] Delorme, R.; Tabiai, I.; Laberge Lebel, L.; Lévesque, M., Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity, Mech Time-Depend Mater, 21, 549-575 (2017) · doi:10.1007/s11043-017-9342-3
[76] Madenci, E.; Oterkus, S., Ordinary state-based peridynamics for thermoviscoelastic deformation, Eng Fract Mech, 175, 31-45 (2017) · doi:10.1016/j.engfracmech.2017.02.011
[77] Tupek, M.; Radovitzky, R., An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures, J Mech Phys Solids, 65, 82-92 (2014) · Zbl 1323.74003 · doi:10.1016/j.jmps.2013.12.012
[78] O’Grady, J.; Foster, J., Peridynamic plates and flat shells: A non-ordinary, state-based model, Int J Solids Struct, 51, 25, 4572-4579 (2014) · doi:10.1016/j.ijsolstr.2014.09.003
[79] Yaghoobi, A.; Chorzepa, M.; Kim, S., Mesoscale fracture analysis of multiphase cementitious composites using peridynamics, Materials, 10, 2, 162 (2017) · doi:10.3390/ma10020162
[80] Chen, X.; Gunzburger, M., Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput Methods Appl Mech Eng, 200, 9-12, 1237-1250 (2011) · Zbl 1225.74082 · doi:10.1016/j.cma.2010.10.014
[81] Jha, PK; Lipton, R., Finite element convergence for state-based peridynamic fracture models, Commun Appl Math Comput, 2, 93-128 (2020) · Zbl 1463.74103 · doi:10.1007/s42967-019-00039-4
[82] Macek, RW; Silling, SA, Peridynamics via finite element analysis, Finite Elem Anal Des, 43, 15, 1169-1178 (2007) · doi:10.1016/j.finel.2007.08.012
[83] Weckner, O.; Emmrich, E., Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar, J Comput Appl Mech, 6, 2, 311-319 (2005) · Zbl 1097.74036
[84] Parks, ML; Lehoucq, RB; Plimpton, SJ; Silling, SA, Implementing peridynamics within a molecular dynamics code, Comput Phys Commun, 179, 11, 777-783 (2008) · Zbl 1197.82014 · doi:10.1016/j.cpc.2008.06.011
[85] Emmrich, E.; Weckner, O., The peridynamic equation and its spatial discretisation, Math Model Anal, 12, 1, 17-27 (2007) · Zbl 1121.65073 · doi:10.3846/1392-6292.2007.12.17-27
[86] Littlewood DJ (2015) Roadmap for peridynamic software implementation. Tech. Rep. 2015-9013, Sandia National Laboratories
[87] Parks M, Littlewood D, Mitchell J, Silling S (2012) Peridigm users’ guide. Tech. Rep. SAND2012-7800, Sandia National Laboratories
[88] Diehl, P.; Jha, PK; Kaiser, H.; Lipton, R.; Lévesque, M., An asynchronous and task-based implementation of peridynamics utilizing hpx-the c++ standard library for parallelism and concurrency, SN Appl Sci, 2, 2144 (2020) · doi:10.1007/s42452-020-03784-x
[89] Jha, PK; Diehl, P., Nlmech: Implementation of finite difference/meshfree discretization of nonlocal fracture models, Journal of Open Source Software, 6, 65, 3020 (2021) · doi:10.21105/joss.03020
[90] Heller T, Diehl P, Byerly Z, Biddiscombe J, Kaiser H (2017) “Hpx-an open source c++ standard library for parallelism and concurrency,” Proceedings of OpenSuCo, p. 5
[91] Kaiser, H.; Diehl, P.; Lemoine, AS; Lelbach, BA; Amini, P.; Berge, A.; Biddiscombe, J.; Brandt, SR; Gupta, N.; Heller, T.; Huck, K.; Khatami, Z.; Kheirkhahan, A.; Reverdell, A.; Shirzad, S.; Simberg, M.; Wagle, B.; Wei, W.; Zhang, T., Hpx - the c++ standard library for parallelism and concurrency, J Open Sour Softw, 5, 53, 2352 (2020) · doi:10.21105/joss.02352
[92] Boys B, Dodwell TJ, Hobbs M, Girolami M (2021) Peripy-a high performance opencl peridynamics package. arXiv preprint arXiv:2105.04150 · Zbl 1507.74052
[93] Mossaiby, F.; Shojaei, A.; Zaccariotto, M.; Galvanetto, U., Opencl implementation of a high performance 3d peridynamic model on graphics accelerators, Comput Math Appl, 74, 8, 1856-1870 (2017) · Zbl 1524.74004 · doi:10.1016/j.camwa.2017.06.045
[94] Diehl P (2012) Implementierung eines Peridynamik-Verfahrens auf GPU. diplomarbeit. University of Stuttgart, Institute of Parallel and Distributed Systems
[95] Diehl, P.; Schweitzer, MA, Efficient neighbor search for particle methods on gpus, Meshfree methods for partial differential equations VII, 81-95 (2015), Berlin: Springer, Berlin · Zbl 1342.76098 · doi:10.1007/978-3-319-06898-5_5
[96] Ren, B.; Wu, C.; Askari, E., A 3d discontinuous galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis, Int J Impact Eng, 99, 14-25 (2017) · doi:10.1016/j.ijimpeng.2016.09.003
[97] Silling S (2001) Peridynamic modeling of the kalthoff-winkler experiment, Submission for the
[98] Emmrich, E.; Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity, Commun Math Sci, 5, 4, 851-864 (2007) · Zbl 1133.35098 · doi:10.4310/CMS.2007.v5.n4.a6
[99] Du, Q.; Zhou, K., Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM: Math Model Numer Anal, 45, 2, 217-234 (2011) · Zbl 1269.45005 · doi:10.1051/m2an/2010040
[100] Erbay, HA; Erkip, A.; Muslu, GM, The cauchy problem for a one-dimensional nonlinear elastic peridynamic model, J Differ Equ, 252, 8, 4392-4409 (2012) · Zbl 1234.35266 · doi:10.1016/j.jde.2012.01.008
[101] Du, Q.; Kamm, JR; Lehoucq, RB; Parks, ML, A new approach for a nonlocal, nonlinear conservation law, SIAM J Appl Math, 72, 1, 464-487 (2012) · Zbl 1248.35121 · doi:10.1137/110833233
[102] Emmrich, E.; Puhst, D., Well-posedness of the peridynamic model with lipschitz continuous pairwise force function, Commun Math Sci, 11, 4, 1039-1049 (2013) · Zbl 1434.74016 · doi:10.4310/CMS.2013.v11.n4.a7
[103] Bellido, JC; Mora-Corral, C., Existence for nonlocal variational problems in peridynamics, SIAM J Math Anal, 46, 1, 890-916 (2014) · Zbl 1297.26009 · doi:10.1137/130911548
[104] Mengesha, T.; Du, Q., On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28, 11, 3999 (2015) · Zbl 1330.45011 · doi:10.1088/0951-7715/28/11/3999
[105] Aksoylu, B.; Parks, ML, Variational theory and domain decomposition for nonlocal problems, Appl Math Comput, 217, 14, 6498-6515 (2011) · Zbl 1214.65062 · doi:10.1016/j.amc.2011.01.027
[106] Du, Q.; Gunzburger, M.; Lehoucq, RB; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev, 54, 4, 667-696 (2012) · Zbl 1422.76168 · doi:10.1137/110833294
[107] Du, Q.; Gunzburger, M.; Lehoucq, R.; Zhou, K., Analysis of the volume-constrained peridynamic navier equation of linear elasticity, J Elast, 113, 2, 193-217 (2013) · Zbl 1277.35007 · doi:10.1007/s10659-012-9418-x
[108] Du, Q.; Gunzburger, M.; Lehoucq, RB; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math Models Methods Appl Sci, 23, 3, 493-540 (2013) · Zbl 1266.26020 · doi:10.1142/S0218202512500546
[109] Seleson, P.; Du, Q.; Parks, ML, On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models, Comput Methods Appl Mech Eng, 311, 698-722 (2016) · Zbl 1439.74044 · doi:10.1016/j.cma.2016.07.039
[110] Ganzenmüller, GC; Hiermaier, S.; May, M., On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics, Computers & Structures, 150, 71-78 (2015) · Zbl 1342.74139 · doi:10.1016/j.compstruc.2014.12.011
[111] Du, Q.; Tian, X., Robust discretization of nonlocal models related to peridynamics, Meshfree methods for partial differential equations VII, 97-113 (2015), Berlin: Springer, Berlin · Zbl 1342.74178 · doi:10.1007/978-3-319-06898-5_6
[112] Zhou, K.; Du, Q., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J Numer Anal, 48, 5, 1759-1780 (2010) · Zbl 1220.82074 · doi:10.1137/090781267
[113] Tian, X.; Du, Q., Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J Numer Anal, 51, 6, 3458-3482 (2013) · Zbl 1295.82021 · doi:10.1137/13091631X
[114] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J Numer Anal, 52, 4, 1641-1665 (2014) · Zbl 1303.65098 · doi:10.1137/130942644
[115] Diehl, P.; Franzelin, F.; Pflüger, D.; Ganzenmüller, GC, Bond-based peridynamics: a quantitative study of mode i crack opening, Int J Fract, 201, 2, 157-170 (2016) · doi:10.1007/s10704-016-0119-5
[116] Franzelin, F.; Diehl, P.; Pflüger, D., Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, Meshfree methods for partial differential equations VII, 115-143 (2015), Berlin: Springer, Berlin · Zbl 1343.74047 · doi:10.1007/978-3-319-06898-5_7
[117] Jha PK, Lipton R (2018) Well-posed nonlinear nonlocal fracture models associated with double-well potentials, pp. 1-40. Springer International Publishing
[118] Emmrich, E.; Puhst, D., A short note on modelling damage in peridynamics, J Elast, 123, 245-252 (2016) · Zbl 1334.35339 · doi:10.1007/s10659-015-9550-5
[119] Du, Q.; Tao, Y.; Tian, X., A peridynamic model of fracture mechanics with bond-breaking, J Elast, 132, 197-218 (2017) · Zbl 1395.74041 · doi:10.1007/s10659-017-9661-2
[120] Lipton, R.; Said, E.; Jha, P., Free damage propagation with memory, J Elast, 133, 2, 129-153 (2018) · Zbl 1403.74080 · doi:10.1007/s10659-018-9672-7
[121] Jha, PK; Lipton, R., Numerical analysis of nonlocal fracture models in holder space, SIAM J Numer Anal, 56, 2, 906-941 (2018) · Zbl 1388.74054 · doi:10.1137/17M1112236
[122] Jha, PK; Lipton, R., Numerical convergence of finite difference approximations for state based peridynamic fracture models, Comput Methods Appl Mech Eng, 351, 184-225 (2019) · Zbl 1441.74018 · doi:10.1016/j.cma.2019.03.024
[123] Jha, PK; Lipton, R., Finite element approximation of nonlocal dynamic fracture models, Discret Continuous Dyn Syst - B, 26, 3, 1675-1710 (2021) · Zbl 1465.74163 · doi:10.3934/dcdsb.2020178
[124] Lipton, RP; Lehoucq, RB; Jha, PK, Complex fracture nucleation and evolution with nonlocal elastodynamics, J Peridyn Nonlocal Model, 1, 2, 122-130 (2019) · doi:10.1007/s42102-019-00010-0
[125] Lipton RP, Jha PK (2021) Nonlocal elastodynamics and fracture. Nonlinear Differential Equations and Applications · Zbl 1464.74012
[126] DalMaso, G.; Toader, R., On the cauchy problem for the wave equation on time-dependent domains, J Differ Equ, 266, 6, 3209-3246 (2019) · Zbl 1411.35189 · doi:10.1016/j.jde.2018.08.056
[127] Trask, N.; You, H.; Yu, Y.; Parks, ML, An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput Methods Appl Mech Eng, 343, 151-165 (2007) · Zbl 1440.74463 · doi:10.1016/j.cma.2018.08.016
[128] Jha, PK; Lipton, R., Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model, Int J Fract, 226, 1, 81-95 (2020) · doi:10.1007/s10704-020-00480-0
[129] Diehl P (2017) Modeling and simulation of cracks and fractures with peridynamics in brittle materials. Ph.D thesis, University of Bonn, Germany
[130] Seleson, P.; Parks, ML; Gunzburger, M.; Lehoucq, RB, Peridynamics as an upscaling of molecular dynamics, Multiscale Model Simul, 8, 1, 204-227 (2009) · Zbl 1375.82073 · doi:10.1137/09074807X
[131] Bessa, M.; Foster, J.; Belytschko, T.; Liu, WK, A meshfree unification: reproducing kernel peridynamics, Comput Mech, 53, 6, 1251-1264 (2014) · Zbl 1398.74452 · doi:10.1007/s00466-013-0969-x
[132] Bode, T.; Weißenfels, C.; Wriggers, P., Peridynamic petrov-galerkin method: a generalization of the peridynamic theory of correspondence materials, Comput Methods Appl Mech Eng, 358, 112636 (2020) · Zbl 1441.74016 · doi:10.1016/j.cma.2019.112636
[133] Hillman, M.; Pasetto, M.; Zhou, G., Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation, Comput Particle Mech, 7, 2, 435-469 (2020) · doi:10.1007/s40571-019-00266-9
[134] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput Methods Appl Mech Eng, 304, 408-451 (2016) · Zbl 1425.74043 · doi:10.1016/j.cma.2016.02.028
[135] Shojaei, A.; Galvanetto, U.; Rabczuk, T.; Jenabi, A.; Zaccariotto, M., A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains, Comput Methods Appl Mech Eng, 343, 100-126 (2019) · Zbl 1440.65157 · doi:10.1016/j.cma.2018.08.033
[136] Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. The visualization handbook, 717
[137] Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (Oct 2012) VisIt: An end-user tool for visualizing and analyzing very large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357-372, Open Access Publications from the University of California
[138] Levine JA, Bargteil AW, Corsi C, Tessendorf J, Geist R (2014) A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47-55, Eurographics Association
[139] Chen W, Zhu F, Zhao J, Li S, Wang G (2018) Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, 37:112-124, Wiley Online Library
[140] Xu L, He X, Chen W, Li S, Wang G (2018) Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, 37:121-130, Wiley Online Library
[141] Diehl P, Bußler M, Pflüger D, Frey S, Ertl T, Sadlo F, Schweitzer MA (2017) Extraction of fragments and waves after impact damage in particle-based simulations. In: Meshfree Methods for Partial Differential Equations VIII, pp. 17-34, Springer · Zbl 1446.74184
[142] Littlewood D, Silling S, Demmie P (2016) Identification of fragments in a meshfree peridynamic simulation. In: ASME 2016 International Mechanical Engineering Congress and Exposition, pp. V009T12A071-V009T12A071, American Society of Mechanical Engineers
[143] Bussler, M.; Diehl, P.; Pflüger, D.; Frey, S.; Sadlo, F.; Ertl, T.; Schweitzer, MA, Visualization of fracture progression in peridynamics, Comput Gr, 67, 45-57 (2017) · Zbl 1446.74184 · doi:10.1016/j.cag.2017.05.003
[144] Francfort, G.; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[145] Aranson, I.; Kalatsky, V.; Vinokur, V., Continuum field description of crack propagation, Phys Rev Lett, 85, 1, 118 (2000) · doi:10.1103/PhysRevLett.85.118
[146] Bourdin, B.; Francfort, GA; Marigo, J-J, Numerical experiments in revisited brittle fracture, J Mech Phys Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057 · doi:10.1016/S0022-5096(99)00028-9
[147] Francfort, GA; Larsen, CJ, Existence and convergence for quasi-static evolution in brittle fracture, Commun Pure Appl Math, 56, 10, 1465-1500 (2003) · Zbl 1068.74056 · doi:10.1002/cpa.3039
[148] dal Maso, G.; Francfort, GA; Toader, R., Quasistatic crack growth in nonlinear elasticity, Arch Ration Mech Anal, 176, 165-225 (2005) · Zbl 1064.74150 · doi:10.1007/s00205-004-0351-4
[149] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via \(\gamma \)-convergence, Commun Pure Appl Math, 43, 999-1036 (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[150] Ambrosio, L.; Tortorelli, V., On the approximation of free discontinuity problems, Boll Un Mat Ital B, 6, 105-123 (1992) · Zbl 0776.49029
[151] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations, Int J Numer Meth Eng, 83, 10, 1273-1311 (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[152] Bourdin, B.; Marigo, J-J; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys Rev Lett, 112, 1, 014301 (2014) · doi:10.1103/PhysRevLett.112.014301
[153] Wu, J-Y, A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J Mech Phys Solids, 103, 72-99 (2017) · doi:10.1016/j.jmps.2017.03.015
[154] Kuhn, C.; Müller, R., A phase field model for fracture, PAMM, 8, 1, 10223-10224 (2008) · Zbl 1394.74176 · doi:10.1002/pamm.200810223
[155] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng Fract Mech, 77, 18, 3625-3634 (2010) · doi:10.1016/j.engfracmech.2010.08.009
[156] Pham, K.; Marigo, J-J, Approche variationnelle de l’endommagement : I. les concepts fondamentaux, Comptes Rendus Mécanique, 338, 4, 191-198 (2010) · Zbl 1300.74046 · doi:10.1016/j.crme.2010.03.009
[157] Pham, K.; Marigo, J-J, Approche variationnelle de l’endommagement : Ii. les modèles à gradient, Comptes Rendus Mécanique, 338, 4, 199-206 (2010) · Zbl 1300.74047 · doi:10.1016/j.crme.2010.03.012
[158] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJR; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Meth Appl Mech Engrg, 217, 77-95 (2012) · Zbl 1253.74089 · doi:10.1016/j.cma.2012.01.008
[159] Sargado, JM; Keilegavlen, E.; Berre, I.; Nordbotten, JM, High-accuracy phase-field models for brittle fracture based on a new family of degradation functions, J Mech Phys Solids, 111, 458-489 (2018) · Zbl 1441.74216 · doi:10.1016/j.jmps.2017.10.015
[160] Arriaga, M.; Waisman, H., Multidimensional stability analysis of the phase-field method for fracture with a general degradation function and energy split, Comput Mech, 61, 181-205 (2018) · Zbl 1461.74079 · doi:10.1007/s00466-017-1432-1
[161] Braides, A., Approximation of free-discontinuity problems (1998), Berlin: Springer Science & Business Media, Berlin · Zbl 0909.49001 · doi:10.1007/BFb0097344
[162] Pham, K.; Ravi-Chandar, K.; Landis, C., Experimental validation of a phase-field model for fracture, Int J Fract, 205, 1, 83-101 (2017) · doi:10.1007/s10704-017-0185-3
[163] Egger, A.; Pillai, U.; Agathos, K.; Kakouris, E.; Chatzi, E.; Aschroft, IA; Triantafyllou, SP, Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review, Appl Sci, 9, 12, 2436 (2019) · doi:10.3390/app9122436
[164] Neitzel, I.; Wick, T.; Wollner, W., An optimal control problem governed by a regularized phase-field fracture propagation model, SIAM J Control Optim, 55, 4, 2271-2288 (2017) · Zbl 1370.49003 · doi:10.1137/16M1062375
[165] Mikelić, A.; Wheeler, MF; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287 · doi:10.1088/0951-7715/28/5/1371
[166] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamiltonian-Jacobi formulations, J Comput Phys, 79, 1, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[167] Lee, S.; Wheeler, MF; Wick, T., Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, J Comput Appl Math, 314, 40-60 (2017) · Zbl 1388.76140 · doi:10.1016/j.cam.2016.10.022
[168] Wheeler, MF; Wick, T.; Lee, S., IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comput Methods Appl Mech Eng, 367, 113124 (2020) · Zbl 1442.74216 · doi:10.1016/j.cma.2020.113124
[169] dal Maso, G.; Toader, R., A model for the quasistatic growth of brittle fractures: existence and approximation results, Arch Ration Mech Anal, 162, 101-135 (2002) · Zbl 1042.74002 · doi:10.1007/s002050100187
[170] Hill, R., A general theory of uniqueness and stability in elastic-plastic solids, J Mech Phys Solids, 6, 3, 236-249 (1958) · Zbl 0091.40301 · doi:10.1016/0022-5096(58)90029-2
[171] Gerasimov, T.; Römer, U.; Vondřejc, J.; Matthies, HG; De Lorenzis, L., Stochastic phase-field modeling of brittle fracture: Computing multiple crack patterns and their probabilities, Comput Methods Appl Mech Eng, 372, 113353 (2020) · Zbl 1506.74351 · doi:10.1016/j.cma.2020.113353
[172] Larsen, CJ; Ortner, C.; Süli, E., Existence of solutions to a regularized model of dynamic fracture, Math Models Methods Appl Sci, 20, 7, 1021-1048 (2010) · Zbl 1425.74418 · doi:10.1142/S0218202510004520
[173] Chambolle, A.; Giacomini, A.; Ponsiglione, M., Crack initiation in brittle materials, Arch Ration Mech Anal, 188, 309-349 (2008) · Zbl 1138.74042 · doi:10.1007/s00205-007-0080-6
[174] van Goethem N, Novotny A (2010) Crack nucleation sensitivity analysis. Math Methods Appl Sci, 33(16) · Zbl 1201.35081
[175] Kumar, A.; Bourdin, B.; Francfort, G.; Lopez-Pamies, O., Revisiting nucleation in the phase-field approach to brittle fracture, J Mech Phys Solids, 142, 104027 (2020) · doi:10.1016/j.jmps.2020.104027
[176] de Lorenzis L, Maurini C (2021) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. Int J Fract. doi:10.1007/s10704-021-00555-6
[177] Chambolle, A.; Francfort, G.; Marigo, J-J, When and how do cracks propagate?, J Mech Phys Solids, 57, 9, 1614-1622 (2009) · Zbl 1371.74016 · doi:10.1016/j.jmps.2009.05.009
[178] Mielke, A., Evolution of rate-independent systems, 461-559 (2005), North-Holland: Elsevier, North-Holland · Zbl 1120.47062
[179] Pham, K.; Amor, H.; Marigo, J-J; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int J Damage Mech, 20, 4, 618-652 (2011) · doi:10.1177/1056789510386852
[180] Pham, K.; Marigo, J-J; Maurini, C., The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, J Mech Phys Solids, 59, 6, 1163-1190 (2011) · Zbl 1270.74015 · doi:10.1016/j.jmps.2011.03.010
[181] Pham, K.; Marigo, J., From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Continuum Mech Thermodyn, 25, 147-171 (2013) · Zbl 1343.74004 · doi:10.1007/s00161-011-0228-3
[182] Nguyen, Q., Bifurcation and postbifurcation analysis in plasticity and brittle fracture, J Mech Phys Solids, 35, 303-324 (1987) · Zbl 0608.73091 · doi:10.1016/0022-5096(87)90010-X
[183] Nguyen, Q., Stability and nonlinear solid mechanics (2000), London: Wiley, London · Zbl 0949.74001
[184] Benallal, A.; Marigo, J-J, Bifurcation and stability issues in gradient theories with softening, Modell Simul Mater Sci Eng, 15, S283-S295 (2006) · doi:10.1088/0965-0393/15/1/S22
[185] de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: Similarities and differences. Computer Methods in Applied Mechanics and Engineering, 312:78-94, Phase Field Approaches to Fracture · Zbl 1439.74347
[186] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput Methods Appl Mech Eng, 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[187] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J Numer Anal, 48, 3, 980-1012 (2010) · Zbl 1305.74080 · doi:10.1137/080741033
[188] Salman, O.; Truskinovsky, L., De-localizing brittle fracture, J Mech Phys Solids, 154, 104517 (2021) · doi:10.1016/j.jmps.2021.104517
[189] Caputo, M.; Fabrizio, M., Damage and fatigue described by a fractional derivative model, J Comput Phys, 293, 400-408 (2015) · Zbl 1349.74030 · doi:10.1016/j.jcp.2014.11.012
[190] Amendola, G.; Fabrizio, M.; Golden, J., Thermomechanics of damage and fatigue by a phase field model, J Therm Stresses, 39, 5, 487-499 (2016) · doi:10.1080/01495739.2016.1152140
[191] Boldrini, J.; de Moraes, EB; Chiarelli, L.; Fumes, F.; Bittencourt, M., A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue, Comput Methods Appl Mech Eng, 312, 395-427 (2016) · Zbl 1439.74023 · doi:10.1016/j.cma.2016.08.030
[192] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng Fract Mech, 190, 53-73 (2018) · doi:10.1016/j.engfracmech.2017.11.036
[193] Seiler, M.; Hantschke, P.; Brosius, A.; Kästner, M., A numerically efficient phase-field model for fatigue fracture-1d analysis, PAMM, 18, 1, e201800207 (2018) · doi:10.1002/pamm.201800207
[194] Mesgarnejad, A.; Imanian, A.; Karma, A., Phase-field models for fatigue crack growth, Theoret Appl Fract Mech, 103, 102282 (2019) · doi:10.1016/j.tafmec.2019.102282
[195] Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P., A general phase-field model for fatigue failure in brittle and ductile solids, Comput Mech, 67, 1431-1452 (2021) · Zbl 1468.74056 · doi:10.1007/s00466-021-01996-5
[196] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput Methods Appl Mech Eng, 361, 112731 (2020) · Zbl 1442.74195 · doi:10.1016/j.cma.2019.112731
[197] Miehe, C.; Schaenzel, L-M; Ulmer, H., Phase field modeling of fracture in multi-physics problems. part i. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput Methods Appl Mech Eng, 294, 449-485 (2015) · Zbl 1423.74838 · doi:10.1016/j.cma.2014.11.016
[198] Schlüter, A.; Kuhn, C.; Müller, R., Simulation of laser-induced controlled fracturing utilizing a phase field model, J Comput Inf Sci Eng, 17, 2, 021001 (2017) · doi:10.1115/1.4034385
[199] Miehe, C.; Hofacker, M.; Schänzel, L-M; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. part ii. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput Methods Appl Mech Eng, 294, 486-522 (2015) · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[200] Radszuweit, M.; Kraus, C., Modeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach, Comput Mech, 60, 1, 163-179 (2017) · Zbl 1387.74044 · doi:10.1007/s00466-017-1393-4
[201] Mikelic, A.; Wheeler, MF; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, Multiscale Model Simul, 13, 1, 367-398 (2015) · Zbl 1317.74028 · doi:10.1137/140967118
[202] Lee, S.; Wheeler, MF; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput Methods Appl Mech Eng, 305, 111-132 (2016) · Zbl 1425.74419 · doi:10.1016/j.cma.2016.02.037
[203] Zhou, S.; Zhuang, X.; Rabczuk, T., A phase-field modeling approach of fracture propagation in poroelastic media, Eng Geol, 240, 189-203 (2018) · doi:10.1016/j.enggeo.2018.04.008
[204] Shanthraj, P.; Svendsen, B.; Sharma, L.; Roters, F.; Raabe, D., Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture, J Mech Phys Solids, 99, 19-34 (2017) · Zbl 1439.74068 · doi:10.1016/j.jmps.2016.10.012
[205] Diehl, M.; Wicke, M.; Shanthraj, P.; Roters, F.; Brueckner-Foit, A.; Raabe, D., Coupled crystal plasticity-phase field fracture simulation study on damage evolution around a void: pore shape versus crystallographic orientation, JOM, 69, 5, 872-878 (2017) · doi:10.1007/s11837-017-2308-8
[206] Duda, FP; Ciarbonetti, A.; Toro, S.; Huespe, AE, A phase-field model for solute-assisted brittle fracture in elastic-plastic solids, Int J Plast, 102, 16-40 (2018) · doi:10.1016/j.ijplas.2017.11.004
[207] Nguyen, T-T; Bolivar, J.; Réthoré, J.; Baietto, M-C; Fregonese, M., A phase field method for modeling stress corrosion crack propagation in a nickel base alloy, Int J Solids Struct, 112, 65-82 (2017) · doi:10.1016/j.ijsolstr.2017.02.019
[208] Martínez-Pañeda, E.; Golahmar, A.; Niordson, CF, A phase field formulation for hydrogen assisted cracking, Comput Methods Appl Mech Eng, 342, 742-761 (2018) · Zbl 1440.82005 · doi:10.1016/j.cma.2018.07.021
[209] Wu, T.; De Lorenzis, L., A phase-field approach to fracture coupled with diffusion, Comput Methods Appl Mech Eng, 312, 196-223 (2016) · Zbl 1439.74249 · doi:10.1016/j.cma.2016.05.024
[210] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, RM, Modeling crack growth during li insertion in storage particles using a fracture phase field approach, J Mech Phys Solids, 92, 313-344 (2016) · Zbl 1423.74833 · doi:10.1016/j.jmps.2016.04.004
[211] Roubicek, T.; Vodicka, R., A monolithic model for phase-field fracture and waves in solid-fluid media towards earthquakes, Int J Fract, 219, 135-152 (2019) · doi:10.1007/s10704-019-00386-6
[212] Kruzik, M.; Roubicek, T., Mathematical methods in continuum mechanics of solids (2019), Berlin: Springer, Berlin · Zbl 1416.74001 · doi:10.1007/978-3-030-02065-1
[213] Fei, F.; Choo, J., A phase-field method for modeling cracks with frictional contact, Int J Numer Meth Eng, 121, 740-762 (2019) · Zbl 07843220 · doi:10.1002/nme.6242
[214] Ulmer, H.; Hofacker, M.; Miehe, C., Phase field modeling of fracture in plates and shells, PAMM, 12, 1, 171-172 (2012) · doi:10.1002/pamm.201210076
[215] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., A variational approach to the fracture of brittle thin films subject to out-of-plane loading, J Mech Phys Solids, 61, 11, 2360-2379 (2013) · doi:10.1016/j.jmps.2013.05.001
[216] Amiri, F.; Millán, D.; Shen, Y.; Rabczuk, T.; Arroyo, M., Phase-field modeling of fracture in linear thin shells, Theoret Appl Fract Mech, 69, 102-109 (2014) · doi:10.1016/j.tafmec.2013.12.002
[217] Ambati, M.; De Lorenzis, L., Phase-field modeling of brittle and ductile fracture in shells with isogeometric nurbs-based solid-shell elements, Comput Methods Appl Mech Eng, 312, 351-373 (2016) · Zbl 1439.74338 · doi:10.1016/j.cma.2016.02.017
[218] Areias, P.; Rabczuk, T.; Msekh, M., Phase-field analysis of finite-strain plates and shells including element subdivision, Comput Methods Appl Mech Eng, 312, 322-350 (2016) · Zbl 1439.74341 · doi:10.1016/j.cma.2016.01.020
[219] Reinoso, J.; Paggi, M.; Linder, C., Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation, Comput Mech, 59, 6, 981-1001 (2017) · Zbl 1398.74394 · doi:10.1007/s00466-017-1386-3
[220] Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering, vol. 312, pp. 374-394. Phase Field Approaches to Fracture · Zbl 1439.74357
[221] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation, Int J Fract, 178, 1-2, 113-129 (2012) · doi:10.1007/s10704-012-9753-8
[222] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJ; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217, 77-95 (2012) · Zbl 1253.74089 · doi:10.1016/j.cma.2012.01.008
[223] Borden, MJ; Hughes, TJ; Landis, CM; Verhoosel, CV, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput Methods Appl Mech Eng, 273, 100-118 (2014) · Zbl 1296.74098 · doi:10.1016/j.cma.2014.01.016
[224] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., Validation simulations for the variational approach to fracture, Comput Methods Appl Mech Eng, 290, 420-437 (2015) · Zbl 1423.74960 · doi:10.1016/j.cma.2014.10.052
[225] Borden, MJ; Hughes, TJ; Landis, CM; Anvari, A.; Lee, IJ, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Eng, 312, 130-166 (2016) · Zbl 1439.74343 · doi:10.1016/j.cma.2016.09.005
[226] Liu, G.; Li, Q.; Msekh, MA; Zuo, Z., Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput Mater Sci, 121, 35-47 (2016) · doi:10.1016/j.commatsci.2016.04.009
[227] Gültekin, O.; Dal, H.; Holzapfel, GA, A phase-field approach to model fracture of arterial walls: theory and finite element analysis, Comput Methods Appl Mech Eng, 312, 542-566 (2016) · Zbl 1439.74198 · doi:10.1016/j.cma.2016.04.007
[228] Pham, K.; Ravi-Chandar, K., The formation and growth of echelon cracks in brittle materials, Int J Fract, 206, 2, 229-244 (2017) · doi:10.1007/s10704-017-0212-4
[229] Miehe, C.; Schänzel, L-M, Phase field modeling of fracture in rubbery polymers. part i: Finite elasticity coupled with brittle failure, J Mech Phys Solids, 65, 93-113 (2014) · Zbl 1323.74012 · doi:10.1016/j.jmps.2013.06.007
[230] Hesch, C.; Weinberg, K., Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture, Int J Numer Meth Eng, 99, 12, 906-924 (2014) · Zbl 1352.74021 · doi:10.1002/nme.4709
[231] Raina, A.; Miehe, C., A phase-field model for fracture in biological tissues, Biomech Model Mechanobiol, 15, 3, 479-496 (2016) · doi:10.1007/s10237-015-0702-0
[232] Hesch, C.; Gil, A.; Ortigosa, R.; Dittmann, M.; Bilgen, C.; Betsch, P.; Franke, M.; Janz, A.; Weinberg, K., A framework for polyconvex large strain phase-field methods to fracture, Comput Methods Appl Mech Eng, 317, 649-683 (2017) · Zbl 1439.74026 · doi:10.1016/j.cma.2016.12.035
[233] Lee S, Yoon HC, Muddamallappa MS (2020) Nonlinear strain-limiting elasticity for fracture propagation with phase-field approach
[234] Wu J, McAuliffe C, Waisman H, Deodatis G (2016) Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method. Computer Methods in Applied Mechanics and Engineering, 312:596-634. Phase Field Approaches to Fracture · Zbl 1439.74097
[235] Bourdin, B.; Larsen, CJ; Richardson, CL, A time-discrete model for dynamic fracture based on crack regularization, Int J Fract, 168, 2, 133-143 (2011) · Zbl 1283.74055 · doi:10.1007/s10704-010-9562-x
[236] Schlüter, A.; Willenbücher, A.; Kuhn, C.; Müller, R., Phase field approximation of dynamic brittle fracture, Comput Mech, 54, 5, 1141-1161 (2014) · Zbl 1311.74106 · doi:10.1007/s00466-014-1045-x
[237] Li, T.; Marigo, J-J; Guilbaud, D.; Potapov, S., Gradient damage modeling of brittle fracture in an explicit dynamics context, Int J Numer Meth Eng, 108, 11, 1381-1405 (2016) · Zbl 07870042 · doi:10.1002/nme.5262
[238] Roubicek T (2019) Models of dynamic damage and phase-field fracture, and their various time discretisations · Zbl 1443.74256
[239] Geelen, RJ; Liu, Y.; Hu, T.; Tupek, MR; Dolbow, JE, A phase-field formulation for dynamic cohesive fracture, Comput Methods Appl Mech Eng, 348, 680-711 (2019) · Zbl 1440.74359 · doi:10.1016/j.cma.2019.01.026
[240] Arriaga, M.; Waisman, H., Combined stability analysis of phase-field dynamic fracture and shear band localization, Int J Plast, 96, 81-119 (2017) · doi:10.1016/j.ijplas.2017.04.018
[241] Mandal, TK; Nguyen, VP; Wu, J-Y, Evaluation of variational phase-field models for dynamic brittle fracture, Eng Fract Mech, 235, 107169 (2020) · doi:10.1016/j.engfracmech.2020.107169
[242] Verhoosel, CV; de Borst, R., A phase-field model for cohesive fracture, Int J Numer Meth Eng, 96, 1, 43-62 (2013) · Zbl 1352.74029 · doi:10.1002/nme.4553
[243] May, S.; Vignollet, J.; De Borst, R., A numerical assessment of phase-field models for brittle and cohesive fracture: \( \gamma \)-convergence and stress oscillations, Eur J Mech-A/Solids, 52, 72-84 (2015) · Zbl 1406.74599 · doi:10.1016/j.euromechsol.2015.02.002
[244] Nguyen, TT; Yvonnet, J.; Zhu, Q-Z; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Comput Methods Appl Mech Eng, 312, 567-595 (2016) · Zbl 1439.74243 · doi:10.1016/j.cma.2015.10.007
[245] Vignollet, J.; May, S.; De Borst, R.; Verhoosel, CV, Phase-field models for brittle and cohesive fracture, Meccanica, 49, 11, 2587-2601 (2014) · doi:10.1007/s11012-013-9862-0
[246] Fei, F.; Choo, J., Double-phase-field formulation for mixed-mode fracture in rocks, Comput Methods Appl Mech Eng, 376, 113655 (2021) · Zbl 1506.74349 · doi:10.1016/j.cma.2020.113655
[247] Chen, L.; de Borst, R., Phase-field modelling of cohesive fracture, Eur J Mech A Solids, 90, 104343 (2021) · Zbl 1481.74051 · doi:10.1016/j.euromechsol.2021.104343
[248] Duda, FP; Ciarbonetti, A.; Sánchez, PJ; Huespe, AE, A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int J Plast, 65, 269-296 (2015) · doi:10.1016/j.ijplas.2014.09.005
[249] Alessi, R.; Marigo, J-J; Vidoli, S., Gradient damage models coupled with plasticity: variational formulation and main properties, Mech Mater, 80, 351-367 (2015) · doi:10.1016/j.mechmat.2013.12.005
[250] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput Mech, 57, 1, 149-167 (2016) · Zbl 1381.74181 · doi:10.1007/s00466-015-1225-3
[251] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 5, 1017-1040 (2015) · Zbl 1329.74018 · doi:10.1007/s00466-015-1151-4
[252] Kuhn, C.; Noll, T.; Müller, R., On phase field modeling of ductile fracture, GAMM-Mitteilungen, 39, 1, 35-54 (2016) · Zbl 1397.74027 · doi:10.1002/gamm.201610003
[253] Noii N, Khodadadian A, Ulloa J, Aldakheel F, Wick T, Francois S, Wriggers P (2021) Bayesian inversion for unified ductile phase-field fracture. Computational Mechanics · Zbl 1478.74076
[254] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.; Wriggers, P.; Hesch, C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput Methods Appl Mech Eng, 361, 112730 (2020) · Zbl 1442.74040 · doi:10.1016/j.cma.2019.112730
[255] Kienle, D.; Aldakheel, F.; Keip, M-A, A finite-strain phase-field approach to ductile failure of frictional materials, Int J Solids Struct, 172-173, 147-162 (2019) · doi:10.1016/j.ijsolstr.2019.02.006
[256] Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual element formulation for phase-field modeling of ductile fracture, Int J Multiscale Comput Eng, 17, 2, 181-200 (2019) · Zbl 1468.74085 · doi:10.1615/IntJMultCompEng.2018026804
[257] Arriaga M, Waisman H (2018) Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation. Mechanics of Materials, vol. 116, pp. 33-48. IUTAM Symposium on Dynamic Instabilities in Solids · Zbl 1461.74079
[258] Choo, J.; Sun, W., Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow, Comput Methods Appl Mech Eng, 330, 1-32 (2018) · Zbl 1439.74184 · doi:10.1016/j.cma.2017.10.009
[259] Bleyer, J.; Alessi, R., Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput Methods Appl Mech Eng, 336, 213-236 (2018) · Zbl 1440.74354 · doi:10.1016/j.cma.2018.03.012
[260] Hakim, V.; Karma, A., Crack path prediction in anisotropic brittle materials, Phys Rev Lett, 95, 23, 235501 (2005) · doi:10.1103/PhysRevLett.95.235501
[261] Clayton, JD; Knap, J., A geometrically nonlinear phase field theory of brittle fracture, Int J Fract, 189, 2, 139-148 (2014) · doi:10.1007/s10704-014-9965-1
[262] Li, B.; Peco, C.; Millán, D.; Arias, I.; Arroyo, M., Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, Int J Numer Meth Eng, 102, 3-4, 711-727 (2015) · Zbl 1352.74290 · doi:10.1002/nme.4726
[263] Nguyen, TT; Réthoré, J.; Baietto, M-C, Phase field modelling of anisotropic crack propagation, Eur J Mech-A/Solids, 65, 279-288 (2017) · Zbl 1406.74602 · doi:10.1016/j.euromechsol.2017.05.002
[264] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M-A, Phase field modeling of fracture in anisotropic brittle solids, Int J Non-Linear Mech, 97, 1-21 (2017) · doi:10.1016/j.ijnonlinmec.2017.06.018
[265] Baldelli, AL; Babadjian, J-F; Bourdin, B.; Henao, D.; Maurini, C., A variational model for fracture and debonding of thin films under in-plane loadings, J Mech Phys Solids, 70, 320-348 (2014) · Zbl 1328.74059 · doi:10.1016/j.jmps.2014.05.020
[266] Hansen-Dörr, AC; de Borst, R.; Hennig, P.; Kästner, M., Phase-field modelling of interface failure in brittle materials, Comput Methods Appl Mech Eng, 346, 25-42 (2019) · Zbl 1440.74048 · doi:10.1016/j.cma.2018.11.020
[267] Patil, R.; Mishra, B.; Singh, I.; Bui, T., A new multiscale phase field method to simulate failure in composites, Adv Eng Softw, 126, 9-33 (2018) · doi:10.1016/j.advengsoft.2018.08.010
[268] Quintanas-Corominas, A.; Reinoso, J.; Casoni, E.; Turon, A.; Mayugo, J., A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials, Compos Struct, 220, 899-911 (2019) · doi:10.1016/j.compstruct.2019.02.007
[269] Song, L.; Meng, S.; Xu, C.; Fang, G.; Yang, Q., Finite element-based phase-field simulation of interfacial damage in unidirectional composite under transverse tension, Modell Simul Mater Sci Eng, 27, 5, 055011 (2019) · doi:10.1088/1361-651X/ab1f63
[270] Spatschek, R.; Pilipenko, D.; Müller-Gugenberger, C.; Brener, EA, Phase field modeling of fracture and composite materials, Phys Rev Lett, 96, 015502 (2006) · doi:10.1103/PhysRevLett.96.015502
[271] Denli FA, Gültekin O, Holzapfel GA, Dal H (2020) A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. Computational Mechanics, pp 1-18 · Zbl 1462.74137
[272] Russ, J.; Slesarenko, V.; Rudykh, S.; Waisman, H., Rupture of 3d-printed hyperelastic composites: Experiments and phase field fracture modeling, J Mech Phys Solids, 140, 103941 (2020) · doi:10.1016/j.jmps.2020.103941
[273] Amor, H.; Marigo, J-J; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J Mech Phys Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257 · doi:10.1016/j.jmps.2009.04.011
[274] Zhang, X.; Sloan, SW; Vignes, C.; Sheng, D., A modification of the phase-field model for mixed mode crack propagation in rock-like materials, Comput Methods Appl Mech Eng, 322, 123-136 (2017) · Zbl 1439.74188 · doi:10.1016/j.cma.2017.04.028
[275] Strobl, M.; Seelig, T., A novel treatment of crack boundary conditions in phase field models of fracture, Pamm, 15, 1, 155-156 (2015) · doi:10.1002/pamm.201510068
[276] Steinke, C.; Kaliske, M., A phase-field crack model based on directional stress decomposition, Comput Mech, 63, 5, 1019-1046 (2019) · Zbl 1468.74053 · doi:10.1007/s00466-018-1635-0
[277] Bryant, EC; Sun, W., A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput Methods Appl Mech Eng, 342, 561-584 (2018) · Zbl 1440.74218 · doi:10.1016/j.cma.2018.08.008
[278] Freddi, F.; Royer-Carfagni, G., Regularized variational theories of fracture: a unified approach, J Mech Phys Solids, 58, 8, 1154-1174 (2010) · Zbl 1244.74114 · doi:10.1016/j.jmps.2010.02.010
[279] Bilgen, C.; Homberger, S.; Weinberg, K., Phase-field fracture simulations of the brazilian splitting test, Int J Fract, 220, 85-98 (2019) · doi:10.1007/s10704-019-00401-w
[280] Fan M, Jin Y, Wick T (2021) A quasi-monolithic phase-field description for mixed-mode fracture using predictor-corrector mesh adaptivity. Engineering with Computers. Accepted
[281] Bleyer, J.; Roux-Langlois, C.; Molinari, J-F, Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms, Int J Fract, 204, 1, 79-100 (2017) · doi:10.1007/s10704-016-0163-1
[282] Weinberg K, Wieners C (2021) Dynamic phase-field fracture with a first-order discontinuous galerkin method for elastic waves · Zbl 1507.74427
[283] Mang, K.; Wick, T.; Wollner, W., A phase-field model for fractures in nearly incompressible solids, Comput Mech, 65, 61-78 (2020) · Zbl 1477.65233 · doi:10.1007/s00466-019-01752-w
[284] Basava S, Mang K, Walloth M, Wick T, Wollner W (2020) Adaptive and pressure-robust discretization of incompressible pressure-driven phase-field fracture. accepted, SPP 1748 final report
[285] Mang, K.; Fehse, A.; Kröger, NH; Wick, T., A mixed phase-field fracture model for crack propagation in punctured epdm strips, Theoret Appl Fract Mech, 115, 103076 (2021) · doi:10.1016/j.tafmec.2021.103076
[286] Kuhn C, Müller R (2009) Phase field simulation of thermomechanical fracture. In: PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 9, pp 191-192, Wiley Online Library
[287] Wheeler, M.; Wick, T.; Wollner, W., An augmented-Lagangrian method for the phase-field approach for pressurized fractures, Comp Meth Appl Mech Engrg, 271, 69-85 (2014) · Zbl 1296.65170 · doi:10.1016/j.cma.2013.12.005
[288] Gerasimov, T.; Lorenzis, LD, On penalization in variational phase-field models of brittle fracture, Comput Methods Appl Mech Eng, 354, 990-1026 (2019) · Zbl 1441.74203 · doi:10.1016/j.cma.2019.05.038
[289] Neitzel, I.; Wick, T.; Wollner, W., An optimal control problem governed by a regularized phase-field fracture propagation model. part ii: The regularization limit, SIAM J Control Optim, 57, 3, 1672-1690 (2019) · Zbl 1420.49006 · doi:10.1137/18M122385X
[290] Heister, T.; Wheeler, MF; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput Methods Appl Mech Eng, 290, 466-495 (2015) · Zbl 1423.76239 · doi:10.1016/j.cma.2015.03.009
[291] Wambacq J, Ulloa J, Lombaert G, François S (2020) Interior-point methods for the phase-field approach to brittle and ductile fracture · Zbl 1506.74026
[292] Kuhn, C.; Müller, R., A new finite element technique for a phase field model of brittle fracture, J Theor Appl Mech, 49, 01 (2011)
[293] Engwer C, Schumacher L (2017) A phase field approach to pressurized fractures using discontinuous galerkin methods. Mathematics and Computers in Simulation, vol. 137, pp. 266-285 · Zbl 1540.74124
[294] Zhou, JX; Li, ME, Solving phase field equations using a meshless method, Commun Numer Methods Eng, 22, 11, 1109-1115 (2006) · Zbl 1109.65087 · doi:10.1002/cnm.873
[295] Li, W.; Nguyen-Thanh, N.; Zhou, K., Phase-field modeling of brittle fracture in a 3d polycrystalline material via an adaptive isogeometric-meshfree approach, Int J Numer Meth Eng, 121, 22, 5042-5065 (2020) · Zbl 1543.74087 · doi:10.1002/nme.6509
[296] Bourdin, B., Numerical implementation of a variational formulation of quasi-static brittle fracture, Interfaces Free Bound, 9, 411-430 (2007) · Zbl 1130.74040 · doi:10.4171/IFB/171
[297] Farrell, P.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Int J Numer Meth Eng, 109, 5, 648-667 (2017) · Zbl 07874318 · doi:10.1002/nme.5300
[298] Wu, J-Y, A geometrically regularized gradient-damage model with energetic equivalence, Comput Methods Appl Mech Eng, 328, 612-637 (2018) · Zbl 1439.74032 · doi:10.1016/j.cma.2017.09.027
[299] Wu, J-Y, Robust numerical implementation of non-standard phase-field damage models for failure in solids, Comput Methods Appl Mech Eng, 340, 767-797 (2018) · Zbl 1440.74043 · doi:10.1016/j.cma.2018.06.007
[300] Brun, MK; Wick, T.; Berre, I.; Nordbotten, JM; Radu, FA, An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, Comput Methods Appl Mech Eng, 361, 112752 (2020) · Zbl 1442.74208 · doi:10.1016/j.cma.2019.112752
[301] Storvik E, Both JW, Sargado JM, Nordbotten JM, Radu FA (2021) An accelerated staggered scheme for phase-field modeling of brittle fracture. Comput Methods Appl Mech Eng 381:113822. doi:10.1016/j.cma.2021.113822 · Zbl 1506.74366
[302] Jammoul M, Wheeler MF, Wick T (2020) A phase-field multirate scheme with stabilized iterative coupling for pressure driven fracture propagation in porous media. Comput Math Appl 91:176-191. doi:10.1016/j.camwa.2020.11.009 · Zbl 1524.74401
[303] Engwer C, Pop IS, Wick T (2021) Dynamic and Weighted Stabilizations of the L-scheme Applied to a Phase-Field Model for Fracture Propagation. In: Vermolen FJ, Vuik C (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. doi:10.1007/978-3-030-55874-1_117 · Zbl 1475.74106
[304] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput Methods Appl Mech Eng, 312, 276-303 (2016) · Zbl 1439.74349 · doi:10.1016/j.cma.2015.12.017
[305] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput Methods Appl Mech Eng, 325, 577-611 (2017) · Zbl 1439.74375 · doi:10.1016/j.cma.2017.07.026
[306] Wick, T., An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J Sci Comput, 39, 4, B589-B617 (2017) · Zbl 1403.74131 · doi:10.1137/16M1063873
[307] Jodlbauer, D.; Langer, U.; Wick, T., Matrix-free multigrid solvers for phase-field fracture problems, Comput Methods Appl Mech Eng, 372, 113431 (2020) · Zbl 1506.74355 · doi:10.1016/j.cma.2020.113431
[308] Kopanicakova, A.; Krause, R., A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture, Comput Methods Appl Mech Eng, 360, 112720 (2020) · Zbl 1441.74208 · doi:10.1016/j.cma.2019.112720
[309] May, S.; Vignollet, J.; de Borst, R., A new arc-length control method based on the rates of the internal and the dissipated energy, Eng Comput, 33, 1, 100-115 (2016) · doi:10.1108/EC-02-2015-0044
[310] Singh, N.; Verhoosel, C.; De Borst, R.; Van Brummelen, E., A fracture-controlled path-following technique for phase-field modeling of brittle fracture, Finite Elem Anal Des, 113, 14-29 (2016) · doi:10.1016/j.finel.2015.12.005
[311] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, PAMM, 18, 1, e201800353 (2018) · doi:10.1002/pamm.201800353
[312] Jodlbauer, D.; Langer, U.; Wick, T., Parallel matrix-free higher-order finite element solvers for phase-field fracture problems, Math Comput Appl, 25, 3, 40 (2020) · Zbl 1506.74355
[313] Ma, R.; Sun, W., FFT-based solver for higherorder and multi-phase-field fracture models applied to strongly anisotropic brittle materials, Comput Methods Appl Mech Eng (2020) · Zbl 1439.74364 · doi:10.1016/j.cma.2019.112781
[314] Nguyen, TT; Yvonnet, J.; Zhu, Q-Z; Bornert, M.; Chateau, C., A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Eng Fract Mech, 139, 18-39 (2015) · doi:10.1016/j.engfracmech.2015.03.045
[315] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput Methods Appl Mech Eng, 361, 112744 (2020) · Zbl 1442.74213 · doi:10.1016/j.cma.2019.112744
[316] Zavattieri, PD, Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements, J Appl Mech, 73, 6, 948-958 (2006) · Zbl 1111.74738 · doi:10.1115/1.2173286
[317] Kuhn, C.; Schlüter, A.; Müller, R., On degradation functions in phase field fracture models, Comput Mater Sci, 108, 374-384 (2015) · doi:10.1016/j.commatsci.2015.05.034
[318] Steinke, C.; Özenç, K.; Chinaryan, G.; Kaliske, M., A comparative study of the r-adaptive material force approach and the phase-field method in dynamic fracture, Int J Fract, 201, 1, 97-118 (2016) · doi:10.1007/s10704-016-0125-7
[319] Msekh, MA; Sargado, JM; Jamshidian, M.; Areias, PM; Rabczuk, T., Abaqus implementation of phase-field model for brittle fracture, Comput Mater Sci, 96, 472-484 (2015) · doi:10.1016/j.commatsci.2014.05.071
[320] Molnár, G.; Gravouil, A., 2d and 3d abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem Anal Des, 130, 27-38 (2017) · doi:10.1016/j.finel.2017.03.002
[321] Pillai, U.; Heider, Y.; Markert, B., A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine, Comput Mater Sci, 153, 36-47 (2018) · doi:10.1016/j.commatsci.2018.06.024
[322] Bhowmick, S.; Liu, GR, A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method, Eng Fract Mech, 204, 369-387 (2018) · doi:10.1016/j.engfracmech.2018.10.026
[323] Jeong, H.; Signetti, S.; Han, T-S; Ryu, S., Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation, Comput Mater Sci, 155, 483-492 (2018) · doi:10.1016/j.commatsci.2018.09.021
[324] Wu, J-Y; Huang, Y., Comprehensive implementations of phase-field damage models in abaqus, Theoret Appl Fract Mech, 106, 102440 (2020) · doi:10.1016/j.tafmec.2019.102440
[325] van Zwieten G, van Zwieten J, Verhoosel C, Fonn E, van Opstal T, Hoitinga W (2019) Nutils
[326] Chakraborty, P.; Sabharwall, P.; Carroll, MC, A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite, J Nucl Mater, 475, 200-208 (2016) · doi:10.1016/j.jnucmat.2016.04.006
[327] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandie, D., Moose: A parallel computational framework for coupled systems of nonlinear equations, Nucl Eng Des, 239, 10, 1768-1778 (2009) · doi:10.1016/j.nucengdes.2009.05.021
[328] Heister, T.; Wick, T., pfm-cracks: A parallel-adaptive framework for phase-field fracture propagation, Softw Impacts, 6, 100045 (2020) · doi:10.1016/j.simpa.2020.100045
[329] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, RM, An assessment of the phase field formulation for crack growth, Comput Methods Appl Mech Eng, 294, 313-330 (2015) · Zbl 1423.74833 · doi:10.1016/j.cma.2015.06.009
[330] Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Archive of Numerical Software, 3(100)
[331] Ziaei-Rad, V.; Shen, Y., Massive parallelization of the phase field formulation for crack propagation with time adaptivity, Comput Methods Appl Mech Eng, 312, 224-253 (2016) · Zbl 1439.74379 · doi:10.1016/j.cma.2016.04.013
[332] Bourdin B (2019) bourdin/mef90 0.1.0
[333] Burke S, Ortner C, Süli E (2013) An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional M3AS, 23(9):1663-1697 · Zbl 1266.74044
[334] Mang, K.; Walloth, M.; Wick, T.; Wollner, W., Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator, GAMM-Mitteilungen, 43, 1, e202000003 (2020) · Zbl 1541.74087 · doi:10.1002/gamm.202000003
[335] Walloth M, Wollner W (2021) A posteriori estimator for the adaptive solution of a quasi-static fracture phase-field model with irreversibility constraints · Zbl 1490.65212
[336] Wick, T., Goal functional evaluations for phase-field fracture using pu-based dwr mesh adaptivity, Comput Mech, 57, 6, 1017-1035 (2016) · Zbl 1382.74130 · doi:10.1007/s00466-016-1275-1
[337] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J Sci Comput, 37, 4, B633-B659 (2015) · Zbl 1325.74134 · doi:10.1137/140970495
[338] Wick, T., Dual-weighted residual a posteriori error estimates for a penalized phase-field slit discontinuity problem, Comput Methods Appl Math, 21, 3, 693-707 (2021) · Zbl 1490.74095 · doi:10.1515/cmam-2020-0038
[339] Andersson J, Mikayelyan H (2012) The asymptotics of the curvature of the free discontinuity set near the cracktip for the minimizers of the mumford-shah functional in the plain. arXiv preprint arXiv:1204.5328
[340] Bonnet A, David G (2001) Cracktip is a global Mumford-Shah minimizer. Société mathématique de France · Zbl 1014.49009
[341] Bellettini, G.; Coscia, A., Discrete approximation of a free discontinuity problem, Numer Funct Anal Optim, 15, 3-4, 201-224 (1994) · Zbl 0806.49002 · doi:10.1080/01630569408816562
[342] Schröder J, Wick T, Reese S, Wriggers P, Müller R, Kollmannsberger S, Kästner M, Schwarz A, Igelbüscher M, Viebahn N, Bayat HR, Wulfinghoff S, Mang K, Rank E, Bog T, d’Angella D, Elhaddad M, Hennig P, Düster A, Garhuom W, Hubrich S, Walloth M, Wollner W, Kuhn C, Heister T (2021) A selection of benchmark problems in solid mechanics and applied mathematics. Arch Computat Methods Eng 28:713-751
[343] Negri, M., The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional, Numer Funct Anal Optim, 20, 9-10, 957-982 (1999) · Zbl 0953.49024 · doi:10.1080/01630569908816934
[344] Linse, T.; Hennig, P.; Kästner, M.; de Borst, R., A convergence study of phase-field models for brittle fracture, Eng Fract Mech, 184, 307-318 (2017) · doi:10.1016/j.engfracmech.2017.09.013
[345] Badnava, H.; Msekh, MA; Etemadi, E.; Rabczuk, T., An h-adaptive thermo-mechanical phase field model for fracture, Finite Elem Anal Des, 138, 31-47 (2018) · doi:10.1016/j.finel.2017.09.003
[346] Patil, R.; Mishra, B.; Singh, I., An adaptive multiscale phase field method for brittle fracture, Comput Methods Appl Mech Eng, 329, 254-288 (2018) · Zbl 1439.74368 · doi:10.1016/j.cma.2017.09.021
[347] Wick T (2017) Coupling fluid-structure interaction with phase-field fracture: algorithmic details. In: Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers (S. Frei, B. Holm, T. Richter, T. Wick, and H. Yang, eds.), Radon Series on Computational and Applied Mathematics, Walter de Gruyter, Berlin · Zbl 1390.74004
[348] Aldakheel F (2021) Simulation of fracture processes using global-local approach and virtual elements. Habilitation thesis, Leibniz University Hannover. doi:10.15488/11367
[349] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv Model Simul Eng Sci, 5, 14 (2018) · doi:10.1186/s40323-018-0105-8
[350] Aldakheel F, Noii N, Wick T, Wriggers P (2020) A global-local approach for hydraulic phase-field fracture in poroelastic media. accepted for publication in Computers and Mathematics with Applications (CAMWA) · Zbl 1524.74398
[351] Aldakheel, F.; Noii, N.; Wick, T.; Allix, O.; Wriggers, P., Multilevel global-local techniques for adaptive ductile phase-field fracture, Comput Methods Appl Mech Eng, 387, 114175 (2021) · Zbl 1507.74031 · doi:10.1016/j.cma.2021.114175
[352] Gräser C, Kienle D, Sander O (2021) Truncated nonsmooth newton multigrid for phase-field brittle-fracture problems
[353] Kristensen, PK; Martinez-Paneda, E., Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme, Theoret Appl Fract Mech, 107, 102446 (2020) · doi:10.1016/j.tafmec.2019.102446
[354] Zhang, X.; Vignes, C.; Sloan, SW; Sheng, D., Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale, Comput Mech, 59, 5, 737-752 (2017) · doi:10.1007/s00466-017-1373-8
[355] Zhuang, X.; Zhou, S.; Sheng, M.; Li, G., On the hydraulic fracturing in naturally-layered porous media using the phase field method, Eng Geol, 266, 105306 (2020) · doi:10.1016/j.enggeo.2019.105306
[356] Noll T, Kuhn C, Olesch D, Müller R (2019) 3d phase field simulations of ductile fracture,” GAMM-Mitteilungen, p e202000008
[357] Chukwudozie, C.; Bourdin, B.; Yoshioka, K., A variational phase-field model for hydraulic fracturing in porous media, Comput Methods Appl Mech Eng, 347, 957-982 (2019) · Zbl 1440.74121 · doi:10.1016/j.cma.2018.12.037
[358] Haslach, HW Jr, Maximum dissipation non-equilibrium thermodynamics and its geometric structure (2011), Berlin: Springer Science & Business Media, Berlin · Zbl 1222.80001 · doi:10.1007/978-1-4419-7765-6
[359] Ulmer, H.; Hofacker, M.; Miehe, C., Phase field modeling of brittle and ductile fracture, PAMM, 13, 1, 533-536 (2013) · doi:10.1002/pamm.201310258
[360] Mauthe, S.; Miehe, C., Phase-field modeling of hydraulic fracture, PAMM, 15, 1, 141-142 (2015) · Zbl 1425.74423 · doi:10.1002/pamm.201510061
[361] Miehe, C.; Teichtmeister, S.; Aldakheel, F., Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Philos Trans R Soc A: Math, Phys Eng Sci, 374, 2066, 20150170 (2016) · Zbl 1353.74065 · doi:10.1098/rsta.2015.0170
[362] Roy, P.; Pathrikar, A.; Deepu, S.; Roy, D., Peridynamics damage model through phase field theory, Int J Mech Sci, 128, 181-193 (2017) · doi:10.1016/j.ijmecsci.2017.04.016
[363] Farrahi GH, Javanbakht M, Jafarzadeh H (2018) On the phase field modeling of crack growth and analytical treatment on the parameters. Continuum Mechanics and Thermodynamics, pp 1-18 · Zbl 1442.74218
[364] Alessi, R.; Marigo, J-J; Maurini, C.; Vidoli, S., Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples, Int J Mech Sci, 149, 559-576 (2018) · doi:10.1016/j.ijmecsci.2017.05.047
[365] Jeffrey, R.; Bunger, A., A detailed comparison of experimental and numerical data on hydraulic fracture height growth through stress contrasts, SPE J, 14, 413-422 (2009) · doi:10.2118/106030-PA
[366] Diehl, P.; Tabiai, I.; Baumann, FW; Therriault, D.; Levesque, M., Long term availability of raw experimental data in experimental fracture mechanics, Eng Fract Mech, 197, 21-26 (2018) · doi:10.1016/j.engfracmech.2018.04.030
[367] Devore JL (2011) Probability and statistics for engineering and the sciences. Cengage learning
[368] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat İ, Feng Y, Moore EW, Vand erPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt PS (2020) Contributors, Scipy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods
[369] Boyce, BL; Kramer, SL; Fang, HE; Cordova, TE; Neilsen, MK; Dion, K.; Kaczmarowski, AK; Karasz, E.; Xue, L.; Gross, AJ, The sandia fracture challenge: blind round robin predictions of ductile tearing, Int J Fract, 186, 1-2, 5-68 (2014) · doi:10.1007/s10704-013-9904-6
[370] Hu T, Talamini B, Stershic AJ, Tupek MR, Dolbow JE (2021) A variational phase-field model for ductile fracture with coalescence dissipation · Zbl 1480.74017
[371] Behzadinasab, M.; Foster, JT, The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal, Int J Fract, 218, 1, 97-109 (2019) · doi:10.1007/s10704-019-00363-z
[372] Kramer, SL; Jones, A.; Mostafa, A.; Ravaji, B.; Tancogne-Dejean, T.; Roth, CC; Bandpay, MG; Pack, K.; Foster, JT; Behzadinasab, M., The third sandia fracture challenge: predictions of ductile fracture in additively manufactured metal, Int J Fract, 218, 1-2, 5-61 (2019) · doi:10.1007/s10704-019-00361-1
[373] Behzadinasab, M.; Foster, JT, Revisiting the third sandia fracture challenge: a bond-associated, semi-lagrangian peridynamic approach to modeling large deformation and ductile fracture, Int J Fract, 224, 261-267 (2020) · doi:10.1007/s10704-020-00455-1
[374] Dittmann, M.; Aldakheel, F.; Schulte, J.; Wriggers, P.; Hesch, C., Variational phase-field formulation of non-linear ductile fracture, Comput Methods Appl Mech Eng, 342, 71-94 (2018) · Zbl 1440.74025 · doi:10.1016/j.cma.2018.07.029
[375] Hocine, NA; Abdelaziz, MN; Mesmacque, G., Experimental and numerical investigation on single specimen methods of determination of j in rubber materials, Int J Fract, 94, 4, 321-338 (1998) · doi:10.1023/A:1007520003294
[376] Talamini, B.; Mao, Y.; Anand, L., Progressive damage and rupture in polymers, J Mech Phys Solids, 111, 434-457 (2018) · Zbl 1441.74025 · doi:10.1016/j.jmps.2017.11.013
[377] Behera, D.; Roy, P.; Madenci, E., Peridynamic correspondence model for finite elastic deformation and rupture in neo-hookean materials, Int J Non-Linear Mech, 126, 103564 (2020) · doi:10.1016/j.ijnonlinmec.2020.103564
[378] Sundaram, BM; Tippur, HV, Dynamic fracture of soda-lime glass: A full-field optical investigation of crack initiation, propagation and branching, J Mech Phys Solids, 120, 132-153 (2018) · doi:10.1016/j.jmps.2018.04.010
[379] Mehrmashhadi J, Bahadori M, Bobaru F (2020) On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Engineering Fracture Mechanics, p 107355
[380] Ren B, Wu C (2018) A peridynamic model for damage prediction fiber-reinforced composite laminate. In: 15th International LS-DYNA User Conference, p 10
[381] Dayal, K.; Bhattacharya, K., Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J Mech Phys Solids, 54, 9, 1811-1842 (2006) · Zbl 1120.74690 · doi:10.1016/j.jmps.2006.04.001
[382] Huang, D.; Lu, G.; Qiao, P., An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, Int J Mech Sci, 94, 111-122 (2015) · doi:10.1016/j.ijmecsci.2015.02.018
[383] Mikata, Y., Analytical solutions of peristatic and peridynamic problems for a 1d infinite rod, Int J Solids Struct, 49, 21, 2887-2897 (2012) · doi:10.1016/j.ijsolstr.2012.02.012
[384] Zaccariotto, M.; Luongo, F.; Galvanetto, U., Examples of applications of the peridynamic theory to the solution of static equilibrium problems, Aeronaut J, 119, 1216, 677-700 (2015) · doi:10.1017/S0001924000010770
[385] Buryachenko VA, Wanji C, Shengqi Y (2015) Effective thermoelastic properties of heterogeneous thermoperistatic bar of random structure. International Journal for Multiscale Computational Engineering, 13(1)
[386] Hofacker, M.; Miehe, C., A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns, Int J Numer Meth Eng, 93, 3, 276-301 (2013) · Zbl 1352.74022 · doi:10.1002/nme.4387
[387] Noll, T.; Kuhn, C.; Müller, R., A monolithic solution scheme for a phase field model of ductile fracture, PAMM, 17, 1, 75-78 (2017) · doi:10.1002/pamm.201710023
[388] Tanné, E.; Li, T.; Bourdin, B.; Marigo, J-J; Maurini, C., Crack nucleation in variational phase-field models of brittle fracture, J Mech Phys Solids, 110, 80-99 (2018) · doi:10.1016/j.jmps.2017.09.006
[389] Sneddon, IN; Lowengrub, M., Crack problems in the classical theory of elasticity. SIAM series in Applied Mathematics (1969), Philadelphia: Wiley, Philadelphia · Zbl 0201.26702
[390] Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T., Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theoret Appl Fract Mech, 106, 102447 (2020) · doi:10.1016/j.tafmec.2019.102447
[391] Nguyen, CT; Oterkus, S.; Oterkus, E., A physics-guided machine learning model for two-dimensional structures based on ordinary state-based peridynamics, Theoret Appl Fract Mech, 112, 102872 (2021) · doi:10.1016/j.tafmec.2020.102872
[392] Mandal TK (2021) Phase field fracture modelling of solids: dynamics, anisotropy, and multi-physics. Dissertation, Monash University, Australia
[393] Bobaru, F.; Zhang, G., Why do cracks branch? a peridynamic investigation of dyanmic brittle fracture, Int J Fract, 196, 1, 59-98 (2015) · doi:10.1007/s10704-015-0056-8
[394] Silling, S.; Weckner, O.; Ascari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int J Fract, 162, 219-227 (2010) · Zbl 1425.74045 · doi:10.1007/s10704-010-9447-z
[395] Tupek, MR; Rimoli, JJ; Radovitzky, R., An approach for incorporating classical continuum damage models in state-based peridynamics, Comput Methods Appl Mech Eng, 263, 42-57 (2013) · Zbl 1286.74022 · doi:10.1016/j.cma.2013.04.012
[396] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int J Heat Mass Transf, 53, 19-20, 4047-4059 (2010) · Zbl 1194.80010 · doi:10.1016/j.ijheatmasstransfer.2010.05.024
[397] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J Comput Phys, 265, 71-96 (2014) · Zbl 1349.80020 · doi:10.1016/j.jcp.2014.01.027
[398] Oterkus, S.; Madenci, E.; Agwai, A., Fully coupled peridynamic thermomechanics, J Mech Phys Solids, 64, 1-23 (2014) · Zbl 1349.80020 · doi:10.1016/j.jmps.2013.10.011
[399] Chen, Z.; Bobaru, F., Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion, Comput Phys Commun, 197, 51-60 (2015) · doi:10.1016/j.cpc.2015.08.006
[400] Liao, Y.; Liu, L.; Liu, Q.; Lai, X.; Assefa, M.; Liu, J., Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks, J Therm Stresses, 40, 12, 1484-1501 (2017) · doi:10.1080/01495739.2017.1358070
[401] Diyaroglu, C.; Oterkus, S.; Oterkus, E.; Madenci, E.; Han, S.; Hwang, Y., Peridynamic wetness approach for moisture concentration analysis in electronic packages, Microelectron Reliab, 70, 103-111 (2017) · doi:10.1016/j.microrel.2017.01.008
[402] Tao, Y.; Tian, X.; Du, Q., Nonlocal diffusion and peridynamic models with neumann type constraints and their numerical approximations, Appl Math Comput, 305, 282-298 (2017) · Zbl 1411.74058 · doi:10.1016/j.amc.2017.01.061
[403] Gu X, Zhang Q, Madenci E (2019) Refined bond-based peridynamics for thermal diffusion. Engineering Computations
[404] Ouchi, H.; Katiyar, A.; York, J.; Foster, JT; Sharma, MM, A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach, Comput Mech, 55, 3, 561-576 (2015) · Zbl 1311.74043 · doi:10.1007/s00466-015-1123-8
[405] Wang, Y.; Zhou, X.; Xu, X., Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics, Eng Fract Mech, 163, 248-273 (2016) · doi:10.1016/j.engfracmech.2016.06.013
[406] Zhou, X.; Shou, Y., Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method, Int J Geomech, 17, 3, 04016086 (2016) · doi:10.1061/(ASCE)GM.1943-5622.0000778
[407] Zhou, X-P; Gu, X-B; Wang, Y-T, Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks, Int J Rock Mech Mining Sci, 80, 241-254 (2015) · doi:10.1016/j.ijrmms.2015.09.006
[408] Ren, B.; Fan, H.; Bergel, GL; Regueiro, RA; Lai, X.; Li, S., A peridynamics-sph coupling approach to simulate soil fragmentation induced by shock waves, Comput Mech, 55, 2, 287-302 (2015) · Zbl 1398.74395 · doi:10.1007/s00466-014-1101-6
[409] Fan, H.; Li, S., A peridynamics-sph modeling and simulation of blast fragmentation of soil under buried explosive loads, Comput Methods Appl Mech Eng, 318, 349-381 (2017) · Zbl 1439.74187 · doi:10.1016/j.cma.2017.01.026
[410] Nadimi, S.; Miscovic, I.; McLennan, J., A 3d peridynamic simulation of hydraulic fracture process in a heterogeneous medium, J Petrol Sci Eng, 145, 444-452 (2016) · doi:10.1016/j.petrol.2016.05.032
[411] Wu, F.; Li, S.; Duan, Q.; Li, X., Application of the method of peridynamics to the simulation of hydraulic fracturing process, International Conference on Discrete Element Methods, 561-569 (2016), Berlin: Springer, Berlin · Zbl 1381.74241
[412] Panchadhara, R.; Gordon, PA; Parks, ML, Modeling propellant-based stimulation of a borehole with peridynamics, Int J Rock Mech Min Sci, 93, 330-343 (2017) · doi:10.1016/j.ijrmms.2017.02.006
[413] Lai, X.; Ren, B.; Fan, H.; Li, S.; Wu, C.; Regueiro, RA; Liu, L., Peridynamics simulations of geomaterial fragmentation by impulse loads, Int J Numer Anal Meth Geomech, 39, 12, 1304-1330 (2015) · doi:10.1002/nag.2356
[414] Yan, F.; Feng, X-T; Pan, P-Z; Li, S-J, A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material, Acta Mech Sin, 30, 1, 73-83 (2014) · Zbl 1346.74163 · doi:10.1007/s10409-014-0002-4
[415] Chen, Z.; Bobaru, F., Peridynamic modeling of pitting corrosion damage, J Mech Phys Solids, 78, 352-381 (2015) · doi:10.1016/j.jmps.2015.02.015
[416] Rokkam S, Phan N, Gunzburger M, Shanbhag S, Goel K (2018) “Meshless peridynamics method for modeling corrosion crack propagation,” In: 6th International Conference on Crack Paths (CP 2018)(Verona, Italy). http://www.cp2018.unipr.it
[417] Jafarzadeh, S.; Chen, Z.; Bobaru, F., Peridynamic modeling of intergranular corrosion damage, J Electrochem Soc, 165, 7, C362-C374 (2018) · doi:10.1149/2.0821807jes
[418] Miehe, C.; Mauthe, S.; Teichtmeister, S., Minimization principles for the coupled problem of darcy-biot-type fluid transport in porous media linked to phase field modeling of fracture, J Mech Phys Solids, 82, 186-217 (2015) · doi:10.1016/j.jmps.2015.04.006
[419] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput Methods Appl Mech Eng, 304, 619-655 (2016) · Zbl 1425.74423 · doi:10.1016/j.cma.2015.09.021
[420] Wilson, ZA; Landis, CM, Phase-field modeling of hydraulic fracture, J Mech Phys Solids, 96, 264-290 (2016) · Zbl 1482.74020 · doi:10.1016/j.jmps.2016.07.019
[421] Heider, Y.; Markert, B., A phase-field modeling approach of hydraulic fracture in saturated porous media, Mech Res Commun, 80, 38-46 (2017) · doi:10.1016/j.mechrescom.2016.07.002
[422] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng Fract Mech, 202, 116-134 (2018) · doi:10.1016/j.engfracmech.2018.09.010
[423] Ehlers, W.; Luo, C., A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Comput Methods Appl Mech Eng, 315, 348-368 (2017) · Zbl 1439.74107 · doi:10.1016/j.cma.2016.10.045
[424] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase-field modeling of fluid-driven dynamic cracking in porous media, Comput Methods Appl Mech Eng, 350, 169-198 (2019) · Zbl 1441.74222 · doi:10.1016/j.cma.2019.03.001
[425] van Duijn, C.; Mikelić, A.; Wick, T., A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Math Mech Solids, 24, 5, 1530-1555 (2019) · Zbl 1446.74203 · doi:10.1177/1081286518801050
[426] Noii, N.; Khodadadian, A.; Wick, T., Bayesian inversion for anisotropic hydraulic phase-field fracture, Comput Methods Appl Mech Eng, 386, 114118 (2021) · Zbl 1507.74408 · doi:10.1016/j.cma.2021.114118
[427] Yi, L-P; Waisman, H.; Yang, Z-Z; Li, X-G, A consistent phase field model for hydraulic fracture propagation in poroelastic media, Comput Methods Appl Mech Eng, 372, 113396 (2020) · Zbl 1506.74373 · doi:10.1016/j.cma.2020.113396
[428] Heider Y (2021) Multi-field and multi-scale computational fracture mechanics and machine-learning material modeling. Habilitation thesis, Rheinisch-Westfälische Technische Hochschule Aachen
[429] Mandal, TK; Nguyen, VP; Wu, J-Y; Nguyen-Thanh, C.; de Vaucorbeil, A., Fracture of thermo-elastic solids: Phase-field modeling and new results with an efficient monolithic solver, Comput Methods Appl Mech Eng, 376, 113648 (2021) · Zbl 1506.74362 · doi:10.1016/j.cma.2020.113648
[430] You, T.; Waisman, H.; Zhu, Q-Z, Brittle-ductile failure transition in geomaterials modeled by a modified phase-field method with a varying damage-driving energy coefficient, Int J Plast, 136, 102836 (2021) · doi:10.1016/j.ijplas.2020.102836
[431] Wick, T., Coupling fluid-structure interaction with phase-field fracture, J Comput Phys, 327, 67-96 (2016) · Zbl 1373.74043 · doi:10.1016/j.jcp.2016.09.024
[432] Freund, L., Dynamic fracture mechanics (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0712.73072
[433] Dal Maso, G.; Lazzaroni, G.; Nardini, L., Existence and uniqueness of dynamic evolutions for a peeling test in dimension one, J Differ Equ, 261, 4897-4923 (2016) · Zbl 1347.35143 · doi:10.1016/j.jde.2016.07.012
[434] Lazzaroni, G.; Nardini, L., On the quasistatic limit of dynamic evolutions for a peeling test in dimension one, J Nonlinear Sci, 28, 268-304 (2018) · Zbl 1516.35556 · doi:10.1007/s00332-017-9407-0
[435] Wang, H.; Tian, H., A fast galerkin method with efficient matrix assembly and storage for a peridynamic model, J Comput Phys, 231, 23, 7730-7738 (2012) · Zbl 1254.74112 · doi:10.1016/j.jcp.2012.06.009
[436] Prakash N, Stewart RJ (2020) A multi-threaded method to assemble a sparse stiffness matrix for quasi-static solutions of linearized bond-based peridynamics. Journal of Peridynamics and Nonlocal Modeling, pp 1-35
[437] Cassell, A.; Hobbs, R., Numerical stability of dynamic relaxation analysis of non-linear structures, Int J Numer Meth Eng, 10, 6, 1407-1410 (1976) · doi:10.1002/nme.1620100620
[438] Topping, B.; Khan, A., Parallel computation schemes for dynamic relaxation, Eng Comput, 11, 6, 513-548 (1994) · Zbl 0824.73078 · doi:10.1108/02644409410799407
[439] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theoret Appl Fract Mech, 53, 3, 194-204 (2010) · doi:10.1016/j.tafmec.2010.08.001
[440] Shiihara, Y.; Tanaka, S.; Yoshikawa, N., Fast quasi-implicit nosb peridynamic simulation based on fire algorithm, Mech Eng J, 6, 3, 18-00363 (2019) · doi:10.1299/mej.18-00363
[441] Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M.; Gumbsch, P., Structural relaxation made simple, Phys Rev Lett, 97, 17, 170201 (2006) · doi:10.1103/PhysRevLett.97.170201
[442] Diehl P, Lipton R (2021) Quasistatic fracture using nonliner-nonlocal elastostatics with explicit tangent stiffness matrix
[443] Jafarzadeh, S.; Wang, L.; Larios, A.; Bobaru, F., A fast convolution-based method for peridynamic transient diffusion in arbitrary domains, Comput Methods Appl Mech Eng, 375, 113633 (2021) · Zbl 1506.74477 · doi:10.1016/j.cma.2020.113633
[444] Jafarzadeh S, Mousavi F, Larios A, Bobaru F (2021) A general and fast convolution-based method for peridynamics: applications to elasticity and brittle fracture · Zbl 1507.74054
[445] Saad, Y.; Schultz, MH, Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 3, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[446] Arnoldi, W., The principle of minimized iteration in the solution of the matrix eigenvafue problem, Quart Appl Math, 9, 17-29 (1951) · Zbl 0042.12801 · doi:10.1090/qam/42792
[447] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math Comput, 37, 155, 105-126 (1981) · Zbl 0474.65019 · doi:10.1090/S0025-5718-1981-0616364-6
[448] Nguyen, N-H; Nguyen, VP; Wu, J-Y; Le, T-H-H; Ding, Y., Mesh-based and meshfree reduced order phase-field models for brittle fracture: One dimensional problems, Materials, 12, 11, 1858 (2019) · doi:10.3390/ma12111858
[449] Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, SP-A, A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, Comput Methods Appl Mech Eng, 256, 169-188 (2013) · Zbl 1352.74285 · doi:10.1016/j.cma.2012.12.004
[450] Kane, C.; Marsden, JE; Ortiz, M., Symplectic-energy-momentum preserving variational integrators, J Math Phys, 40, 7, 3353-3371 (1999) · Zbl 0983.70014 · doi:10.1063/1.532892
[451] Shao Y, Duan Q, Qiu S (2021) Adaptive analysis for phase-field model of brittle fracture of functionally graded materials. Engineering Fracture Mechanics, p 107783
[452] Geelen, R.; Plews, J.; Tupek, M.; Dolbow, J., An extended/generalized phase-field finite element method for crack growth with global-local enrichment, Int J Numer Meth Eng, 121, 11, 2534-2557 (2020) · Zbl 07841930 · doi:10.1002/nme.6318
[453] Ouchi, H.; Katiyar, A.; Foster, JT; Sharma, MM, A peridynamics model for the propagation of hydraulic fractures in naturally fractured reservoirs, SPE J, 22, 4, 1-082 (2017) · doi:10.2118/173361-PA
[454] Ni T, Zaccariotto M, Zhu Q-Z, Galvanetto U (2019) Coupling of fem and ordinary state-based peridynamics for brittle failure analysis in 3d. Mechanics of Advanced Materials and Structures, pp 1-16
[455] Bobaru F, Silling SA (2004) Peridynamic 3d models of nanofiber networks and carbon nanotube-reinforced composites. In: AIP Conference Proceedings, vol. 712, pp. 1565-1570, American Institute of Physics
[456] Jafarzadeh, S.; Chen, Z.; Zhao, J.; Bobaru, F., Pitting, lacy covers, and pit merger in stainless steel: 3d peridynamic models, Corros Sci, 150, 17-31 (2019) · doi:10.1016/j.corsci.2019.01.006
[457] Bobaru, F.; Ha, YD; Hu, W., Damage progression from impact in layered glass modeled with peridynamics, Cent Eur J Eng, 2, 4, 551-561 (2012)
[458] Hu, W.; Wang, Y.; Yu, J.; Yen, C-F; Bobaru, F., Impact damage on a thin glass plate with a thin polycarbonate backing, Int J Impact Eng, 62, 152-165 (2013) · doi:10.1016/j.ijimpeng.2013.07.001
[459] Breitenfeld M (2014) Quasi-static non-ordinary state-based peridynamics for the modeling of 3D fracture. Ph.D thesis, University of Illinois at Urbana-Champaign
[460] Liu, W.; Hong, J-W, Discretized peridynamics for brittle and ductile solids, Int J Numer Meth Eng, 89, 8, 1028-1046 (2012) · Zbl 1242.74005 · doi:10.1002/nme.3278
[461] Dally, T.; Weinberg, K., The phase-field approach as a tool for experimental validations in fracture mechanics, Continuum Mech Thermodyn, 29, 4, 947-956 (2017) · Zbl 1379.74001 · doi:10.1007/s00161-015-0443-4
[462] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput Methods Appl Mech Eng, 351, 860-890 (2019) · Zbl 1441.74213 · doi:10.1016/j.cma.2019.03.058
[463] Weinberg, K.; Dally, T.; Schuß, S.; Werner, M.; Bilgen, C., Modeling and numerical simulation of crack growth and damage with a phase field approach, GAMM-Mitteilungen, 39, 1, 55-77 (2016) · Zbl 1397.74176 · doi:10.1002/gamm.201610004
[464] Agwai, A.; Guven, I.; Madenci, E., Predicting crack propagation with peridynamics: a comparative study, Int J Fract, 171, 1, 65 (2011) · Zbl 1283.74052 · doi:10.1007/s10704-011-9628-4
[465] Ha, YD; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int J Fract, 162, 1-2, 229-244 (2010) · Zbl 1425.74416 · doi:10.1007/s10704-010-9442-4
[466] Agrawal, V.; Dayal, K., Dependence of equilibrium griffith surface energy on crack speed in phase-field models for fracture coupled to elastodynamics, Int J Fract, 207, 2, 243-249 (2017) · doi:10.1007/s10704-017-0234-y
[467] Yoshioka, K.; Naumov, D.; Kolditz, O., On crack opening computation in variational phase-field models for fracture, Comput Methods Appl Mech Eng, 369, 113210 (2020) · Zbl 1506.74027 · doi:10.1016/j.cma.2020.113210
[468] Sato, S.; Awaji, H.; Kawamata, K.; Kurumada, A.; Oku, T., Fracture criteria of reactor graphite under multiaxial stesses, Nucl Eng Des, 103, 3, 291-300 (1987) · doi:10.1016/0029-5493(87)90312-8
[469] Cristiano, A.; Marcellan, A.; Long, R.; Hui, C-Y; Stolk, J.; Creton, C., An experimental investigation of fracture by cavitation of model elastomeric networks, J Polym Sci, Part B: Polym Phys, 48, 13, 1409-1422 (2010) · doi:10.1002/polb.22026
[470] Gómez, F.; Elices, M.; Berto, F.; Lazzarin, P., Fracture of v-notched specimens under mixed mode (i+ ii) loading in brittle materials, Int J Fract, 159, 2, 121-135 (2009) · doi:10.1007/s10704-009-9387-7
[471] Kimoto, H.; Usami, S.; Miyata, H., Flaw size dependence in fracture stress of glass and polycrystalline ceramics, Trans Jpn Soc Mech Eng (Ser A), 51, 471, 2482-2488 (1985) · doi:10.1299/kikaia.51.2482
[472] Spetz, A.; Denzer, R.; Tudisco, E.; Dahlblom, O., Phase-field fracture modelling of crack nucleation and propagation in porous rock, Int J Fract, 224, 31-46 (2020) · doi:10.1007/s10704-020-00444-4
[473] Silling, SA; Weckner, O.; Askari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int J Fract, 162, 1-2, 219-227 (2010) · Zbl 1425.74045 · doi:10.1007/s10704-010-9447-z
[474] Littlewood, DJ, A nonlocal approach to modeling crack nucleation in aa 7075-t651, ASME Int Mech Eng Congr Expos, 54945, 567-576 (2011)
[475] Niazi, S.; Chen, Z.; Bobaru, F., Crack nucleation in brittle and quasi-brittle materials: a peridynamic analysis, Theoret Appl Fract Mech, 112, 102855 (2021) · doi:10.1016/j.tafmec.2020.102855
[476] Mang K (2021) Phase-field fracture modeling, numerical solution, and simulations for compressible and incompressible solids. Ph.D thesis, Leibniz University Hannover
[477] Bang D, Madenci E (2017) Peridynamic modeling of hyperelastic membrane deformation. Journal of Engineering Materials and Technology, 139(3)
[478] Waxman R, Guven I (2020) Implementation of a neo-hookean material model in state-based peridynamics to represent nylon bead behavior during high-speed impact. In: AIAA Scitech 2020 Forum, p 0725
[479] Ogden, RW, Non-linear elastic deformations (1997), North Chelmsford: Courier Corporation, North Chelmsford
[480] Rivlin, R., Large elastic deformations of isotropic materials iv. further developments of the general theory, Philos Trans R Soc London. Ser A, Math Phys Sci, 241, 835, 379-397 (1948) · Zbl 0031.42602
[481] Ahadi, A.; Melin, S., Capturing nanoscale effects by peridynamics, Mech Adv Mater Struct, 25, 13, 1115-1120 (2018) · doi:10.1080/15376494.2017.1365985
[482] Bitzek, E.; Kermode, JR; Gumbsch, P., Atomistic aspects of fracture, Int J Fract, 191, 13-30 (2015) · doi:10.1007/s10704-015-9988-2
[483] Patil, SP; Heider, Y.; Padilla, CAH; Cruz-Chú, ER; Markert, B., A comparative molecular dynamics-phase-field modeling approach to brittle fracture, Comput Methods Appl Mech Eng, 312, 117-129 (2016) · Zbl 1439.74369 · doi:10.1016/j.cma.2016.04.005
[484] Buehler, MJ, Atomistic modeling of materials failure (2008), Berlin: Springer, Berlin · doi:10.1007/978-0-387-76426-9
[485] Du Q (2016) Nonlocal calculus of variations and well-posedness of peridynamics. In: Handbook of peridynamic modeling, pp 101-124, Chapman and Hall/CRC
[486] Gu, X.; Madenci, E.; Zhang, Q., Revisit of non-ordinary state-based peridynamics, Eng Fract Mech, 190, 31-52 (2018) · doi:10.1016/j.engfracmech.2017.11.039
[487] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., A state-based peridynamic analysis in a finite element framework, Eng Fract Mech, 195, 104-128 (2018) · doi:10.1016/j.engfracmech.2018.03.033
[488] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., Weak form of peridynamics for nonlocal essential and natural boundary conditions, Comput Methods Appl Mech Eng, 337, 598-631 (2018) · Zbl 1440.74030 · doi:10.1016/j.cma.2018.03.038
[489] Prudhomme, S.; Diehl, P., On the treatment of boundary conditions for bond-based peridynamic models, Comput Methods Appl Mech Eng, 372, 113391 (2020) · Zbl 1506.74433 · doi:10.1016/j.cma.2020.113391
[490] Mei, T.; Zhao, J.; Liu, Z.; Peng, X.; Chen, Z.; Bobaru, F., The role of boundary conditions on convergence properties of peridynamic model for transient heat transfer, J Sci Comput, 87, 2, 1-22 (2021) · Zbl 1464.80005 · doi:10.1007/s10915-021-01469-0
[491] D’Elia M, Li X, Seleson P, Tian X, Yu Y (2019) A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. arXiv preprint arXiv:1912.06668
[492] Silling, SA, Stability of peridynamic correspondence material models and their particle discretizations, Comput Methods Appl Mech Eng, 322, 42-57 (2017) · Zbl 1439.74017 · doi:10.1016/j.cma.2017.03.043
[493] Foster, JT; Xu, X., A generalized, ordinary, finite deformation constitutive correspondence model for peridynamics, Int J Solids Struct, 141, 245-253 (2018) · doi:10.1016/j.ijsolstr.2018.02.026
[494] Deepak, B.; Pranesh, R.; Erdogan, M., An approach for incorporating classical continuum damage models in state-based peridynamics, J Non-Linear Mech, 126, 103564 (2020) · doi:10.1016/j.ijnonlinmec.2020.103564
[495] Chowdhury SR, Roy P, Roy D, Reddy J (2019) A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications. Computer Methods in Applied Mechanics and Engineering · Zbl 1440.74036
[496] Silling SA (2011) A coarsening method for linear peridynamics. International Journal for Multiscale Computational Engineering, 9(6)
[497] Delorme R, Diehl P, Tabiai I, Lebel LL, Lévesque M (2020) Extracting constitutive mechanical parameters in linear elasticity using the virtual fields method within the ordinary state-based peridynamic framework. Journal of Peridynamics and Nonlocal Modeling, pp 1-25
[498] Le, Q.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput Mech, 61, 4, 499-518 (2018) · Zbl 1446.74084 · doi:10.1007/s00466-017-1469-1
[499] Madenci, E.; Oterkus, E., Coupling of the peridynamic theory and finite element method, Peridynamic theory and its applications, 191-202 (2014), Berlin: Springer, Berlin · Zbl 1295.74001 · doi:10.1007/978-1-4614-8465-3_11
[500] Shen, S.; Yang, Z.; Han, F.; Cui, J.; Zhang, J., Peridynamic modeling with energy-based surface correction for fracture simulation of random porous materials, Theoret Appl Fract Mech, 114, 102987 (2021) · doi:10.1016/j.tafmec.2021.102987
[501] Gerstle W, Sau N, Silling S (2005) Peridynamic modeling of plain and reinforced concrete structures. In: Proceedings of 18th International Conference on Structural Mechanics in Reactor Technology
[502] Tan, Y.; Liu, Q.; Zhang, L.; Liu, L.; Lai, X., Peridynamics model with surface correction near insulated cracks for transient heat conduction in functionally graded materials, Materials, 13, 6, 1340 (2020) · doi:10.3390/ma13061340
[503] Florin, B.; Youn, DH, Adaptive refinement and multiscale modeling in 2d peridynamics, J Multiscale Comput Eng, 9, 635-659 (2011) · doi:10.1615/IntJMultCompEng.2011002793
[504] Yunzhe, T.; Xiaochuan, T.; Qiang, D., Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling, Multiscale Model Simul, 17, 1052-1075 (2019) · Zbl 1447.45001 · doi:10.1137/18M1184576
[505] Wildman, RA; Gazonas, GA, A finite difference-augmented peridynamics methodfor reducing wave dispersion, Int J Fract, 190, 39-52 (2014) · doi:10.1007/s10704-014-9973-1
[506] Yolum, U.; Taştan, A.; Güler, MA, A peridynamic model for ductile fracture of moderately thick plates, Procedia Struct Integr, 2, 3713-3720 (2016) · doi:10.1016/j.prostr.2016.06.461
[507] Conradie, J.; Becker, T.; Turner, D., Peridynamic approach to predict ductile and mixed-mode failure, R D J, 35, 1-8 (2019)
[508] Behzadinasab M (2019) Peridynamic modeling of large deformation and ductile fracture. Ph.D thesis, UT Austin
[509] Behzadinasab, M.; Foster, JT, A semi-lagrangian constitutive correspondence framework for peridynamics, J Mech Phys Solids, 137, 103862 (2020) · Zbl 1441.70014 · doi:10.1016/j.jmps.2019.103862
[510] Chen, Z.; Niazi, S.; Bobaru, F., A peridynamic model for brittle damage and fracture in porous materials, Int J Rock Mech Min Sci, 122, 104059 (2019) · doi:10.1016/j.ijrmms.2019.104059
[511] Freimanis, A.; Paeglitis, A., Mesh sensitivity in peridynamic quasi-static simulations, Procedia Eng, 172, 284-291 (2017) · doi:10.1016/j.proeng.2017.02.116
[512] Wang F, Ma Y, Guo Y, Huang W (2019) Studies on quasi-static and fatigue crack propagation behaviours in friction stir welded joints using peridynamic theory. Advances in Materials Science and Engineering, 2019
[513] Biner, S.; Hu, SY, Simulation of damage evolution in composites: a phase-field model, Acta Mater, 57, 7, 2088-2097 (2009) · Zbl 1400.74099 · doi:10.1016/j.actamat.2009.01.012
[514] Doan, DH; Bui, TQ; Duc, ND; Fushinobu, K., Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy, Compos B Eng, 99, 266-276 (2016) · doi:10.1016/j.compositesb.2016.06.016
[515] Feng, D-C; Wu, J-Y, Phase-field regularized cohesive zone model (czm) and size effect of concrete, Eng Fract Mech, 197, 66-79 (2018) · doi:10.1016/j.engfracmech.2018.04.038
[516] Yang, Z-J; Li, B-B; Wu, J-Y, X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete, Eng Fract Mech, 208, 151-170 (2019) · doi:10.1016/j.engfracmech.2019.01.005
[517] Nguyen, VP; Wu, J-Y, Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model, Comput Methods Appl Mech Eng, 340, 1000-1022 (2018) · Zbl 1440.74362 · doi:10.1016/j.cma.2018.06.015
[518] Santillán, D.; Mosquera, JC; Cueto-Felgueroso, L., Phase-field model for brittle fracture. validation with experimental results and extension to dam engineering problems, Eng Fract Mech, 178, 109-125 (2017) · doi:10.1016/j.engfracmech.2017.04.020
[519] Bourdin B (1999) Image segmentation with a finite element method. Math Model Numer Anal 33(2):229-244 · Zbl 0947.65075
[520] Feng, X.; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer Math, 94, 33-65 (2003) · Zbl 1029.65093 · doi:10.1007/s00211-002-0413-1
[521] Feng, X.; Prohl, A., Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits, Math Comp, 73, 541-567 (2004) · Zbl 1115.76049 · doi:10.1090/S0025-5718-03-01588-6
[522] Kolditz L \((2021) \Gamma \)-convergence of a pressurized phase-field fracture model. Bachelor’s thesis, Leibniz Universität Hannover
[523] Kolditz L, Mang K (2021) On the relation of Gamma-convergence parameters for pressure-driven quasi-static phase-field fracture. Examples and Counterexamples, in review
[524] Jodlbauer D (2021) Parallel multigrid solvers for nonlinear coupled field problems. Ph.D thesis, Johannes Kepler University Linz
[525] Hrennikoff A (1941) Solution of problems of elasticity by the framework method · Zbl 0061.42112
[526] Courant R et al., (1994) Variational methods for the solution of problems of equilibrium and vibrations. Lecture notes in pure and applied mathematics, pp 1-1 · Zbl 0810.65100
[527] Zienkiewicz, OC; Taylor, RL; Nithiarasu, P.; Zhu, J., The finite element method (1977), London: McGraw-hill, London · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.