×

When and how do cracks propagate? (English) Zbl 1371.74016

Summary: Crack propagation in an isotropic 2d brittle material is widely viewed as the interplay between two separate criteria. Griffith’s cap on the energy release rate along the crack path decides when the crack propagates, while the Principle of Local Symmetry PLS decides how, that is, in which direction, that crack propagates. The PLS, which essentially predicts mode I propagation, cannot possibly hold in an anisotropic setting. Further it disagrees with its competitor, the principle of maximal energy release, according to which the direction of propagation should coincide with that of maximal energy release. Also, continuity of the time propagation is always implicitly assumed.In the spirit of the rapidly growing variational theory of fracture, we revisit crack path in the light of an often used tool in physics, i.e. energetic meta-stability of the current state among suitable competing crack states. In so doing, we do not need to appeal to either isotropy, or continuity in time. Here, we illustrate the impact of meta-stability in a 2d setting. In a 2d isotropic setting, it recovers the PLS for smooth crack paths. In the anisotropic case, it gives rise to a new criterion. But, of more immediate concern to the community, it also demonstrates that 2d crack kinking in an isotropic setting is incompatible with continuity in time of the propagation. Consequently, if viewing time continuity as non-negotiable, our work implies that the classical view of crack kinking along a single crack branch is not correct and that a change in crack direction necessarily involves more subtle geometries or evolutions.

MSC:

74A45 Theories of fracture and damage
74B05 Classical linear elasticity
74R10 Brittle fracture
Full Text: DOI

References:

[1] Adda-Bedia, M., Path prediction of kinked and branched cracks in plane situations, Phys. Rev. Lett., 93, 18, 185502 (Oct 2004)
[2] Amestoy, M., 1987. Propagation de fissures en élasticité plane. Thèse de doctorat d’État, Université Pierre et Marie Curie, Paris.; Amestoy, M., 1987. Propagation de fissures en élasticité plane. Thèse de doctorat d’État, Université Pierre et Marie Curie, Paris.
[3] Amestoy, M.; Leblond, J.-B., Crack paths in plane situation—II, detailed form of the expansion of the stress intensity factors, Int. J. Solids Struct., 29, 4, 465-501 (1992) · Zbl 0755.73072
[4] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The Variational Approach to Fracture (2008), Springer: Springer New York · Zbl 0995.74057
[5] Chambolle, A., Francfort, G.A., Marigo, J.-J., 2008a. Revisiting energy release rates in brittle fracture, submitted for publication.; Chambolle, A., Francfort, G.A., Marigo, J.-J., 2008a. Revisiting energy release rates in brittle fracture, submitted for publication. · Zbl 1211.74183
[6] Chambolle, A.; Giacomini, A.; Ponsiglione, M., Crack initiation in brittle materials, Arch. Ration. Mech. Anal., 188, 2, 309-349 (2008) · Zbl 1138.74042
[7] Charlotte, M.; Francfort, G. A.; Marigo, J.-J.; Truskinovky, L., Revisiting brittle fracture as an energy minimization problem: comparison of griffith and barenblatt surface energy models, (Benallal, A., Continuous Damage and Fracture, The Data Science Library (2000), Elsevier: Elsevier Paris), 7-12
[8] Charlotte, M.; Laverne, J.; Marigo, J.-J., Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A/Solids, 25, 4, 649-669 (2006) · Zbl 1187.74159
[9] Cotterell, B.; Rice, J. R., Slightly curved or kinked cracks, Int. J. Fract., 16, 2, 155-169 (1980)
[10] Dal Maso, G.; Toader, R., A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Meth. Appl. Sci., 12, 12, 1773-1799 (2002) · Zbl 1205.74149
[11] Dal Maso, G.; Toader, R., A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162, 101-135 (2002) · Zbl 1042.74002
[12] Dal Maso, G.; Zanini, C., Quasi-static crack growth for a cohesive zone model with prescribed crack path, Proc. R. Soc. Edinburgh Sect. A, 137, 2, 253-279 (2007) · Zbl 1116.74004
[13] Dumouchel, P.-E.; Marigo, J.-J.; Charlotte, M., Dynamic fracture: an example of convergence towards a discontinuous quasi-static solution, Continuum Mech. Therm., 20, 1-19 (2008) · Zbl 1160.74401
[14] Francfort, G. A.; Larsen, C., Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pure Appl. Math., 56, 10, 1465-1500 (2003) · Zbl 1068.74056
[15] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[16] Francfort, G. A.; Marigo, J.-J., Une approche variationnelle de la mécanique du défaut, ESAIM: Proc., 6, 57-74 (1998) · Zbl 0924.35008
[17] Gol’dstein, R. V.; Salganik, R. L., Brittle fracture of solids with arbitrary cracks, Int. J. Fract., 10, 507-523 (1974)
[18] Griffith, A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London, CCXXI-A, 163-198 (1920) · Zbl 1454.74137
[19] Hakim, V.; Karma, A., Crack path prediction in anisotropic brittle materials, Phys. Rev. Lett., 95, 23, 235501 (2005)
[20] Irwin, G. R., Fracture, (Handbuch der Physik, vol. 6 (1958), Springer: Springer Berlin), 551-590
[21] Laverne, J.; Marigo, J.-J., Approche globale, minima relatifs et Critère d’Amorçage en Mécanique de la Rupture, C. R. Mec., 332, 4, 313-318 (2004) · Zbl 1369.74008
[22] Mielke, A., Evolution of rate-independent systems, (Evolutionary equations, Handbook of Differential Equation, vol. II (2005), Elsevier, North-Holland: Elsevier, North-Holland Amsterdam), 461-559 · Zbl 1120.47062
[23] Mielke, A.; Theil, F.; Levitas, V. I., A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162, 2, 137-177 (2002) · Zbl 1012.74054
[24] Nguyen, Q. S., Stability and Nonlinear Solid Mechanics (2000), Wiley: Wiley London · Zbl 0949.74001
[25] Oleaga, G. E., Remarks on a basic law for dynamic crack propagation, J. Mech. Phys. Solids, 49, 10, 2273-2306 (2001) · Zbl 1017.74061
[26] Oleaga, G. E., The anti-symmetry principle for quasi-static crack propagation in mode III, Int. J. Fract., 147, 1-4, 21-33 (2007) · Zbl 1141.74041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.