×

A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. (English) Zbl 1462.74137

Summary: This study presents a crack phase-field approach for anisotropic continua to model, in particular, fracture of fiber-reinforced matrix composites. Starting with the variational formulation of the multi-field problem of fracture in terms of the deformation and the crack phase fields, the governing equations feature the evolution of the anisotropic crack phase-field and the balance of linear momentum, presented for finite and small strains. A recently proposed energy-based anisotropic failure criterion is incorporated into the model with a constitutive threshold function regulating the crack initiation in regard to the matrix and the fibers in a superposed framework. Representative numerical examples are shown for the crack initiation and propagation in unidirectional fiber-reinforced polymer composites under Mode-I, Mode-II and mixed-mode bending. Model parameters are obtained by fitting to sets of experimental data. The associated finite element results are able to capture anisotropic crack initiation and growth in unidirectional fiber-reinforced composite laminates.

MSC:

74R10 Brittle fracture
74E30 Composite and mixture properties
74E10 Anisotropy in solid mechanics

References:

[1] ASTM D6671-01 standards test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites (2001), West Conshohocken: ASTM International, West Conshohocken
[2] Alessi, R.; Freddi, F., Phase-field modelling of failure in hybrid laminates, Compos Struct, 181, 9-25 (2017) · doi:10.1016/j.compstruct.2017.08.073
[3] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 1017-1040 (2015) · Zbl 1329.74018 · doi:10.1007/s00466-015-1151-4
[4] Arteiro, A.; Catalanotti, G.; Reinoso, J.; Linde, P.; Camanho, PP, Simulation of the mechanical response of thin-ply composites: from computational micro-mechanics to structural analysis, Arch Comput Methods Eng, 26, 1445-1487 (2019) · doi:10.1007/s11831-018-9291-2
[5] Argon, AS, Fracture of composites, Treatise Mater Sci Technol, 1, 79-114 (1972) · doi:10.1016/B978-0-12-341801-2.50007-2
[6] Azzi, VD; Tsai, SW, Anisotropic strength of composites, Exp Mech, 5, 283-288 (1965) · doi:10.1007/BF02326292
[7] Betten, J.; Boehler, JP, Formulation of anisotropic constitutive equations, Applications of tensor functions in solid mechanics, 228-250 (1987), Wien: Springer, Wien · Zbl 0657.73001
[8] Borden, MJ; Hughes, TJR; Landis, CM; Anvari, A., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Eng, 312, 130-166 (2016) · Zbl 1439.74343 · doi:10.1016/j.cma.2016.09.005
[9] Boehler, JP, A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy, ZAMM Z Angew Math Mech, 59, 157-167 (1979) · Zbl 0416.73002 · doi:10.1002/zamm.19790590403
[10] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. I. Interfacial free energy, J Chem Phys, 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[11] Clayton, JD; Knap, J., Phase field modeling of directional fracture in anisotropic polycrystals, Comput Mater Sci, 98, 158-169 (2015) · doi:10.1016/j.commatsci.2014.11.009
[12] Crews JH Jr, Reeder JR (1988) A mixed-mode bending apparatus for delamination testing. NASA TM, 100662. Technical Report
[13] Cuntze, RG, Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design, Compos Sci Technol, 66, 1081-1096 (2006) · doi:10.1016/j.compscitech.2004.12.046
[14] Dal, H.; Gültekin, O.; Denli, FA; Holzapfel, GA, Phase-field models for the failure of anisotropic continua, Proc Appl Math Mech, 17, 91-94 (2017) · doi:10.1002/pamm.201710027
[15] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[16] Griffith, AA, The phenomena of rupture and flow in solids, Philos Trans R Soc A, 221, 163-197 (1921) · Zbl 1454.74137
[17] Grogan, DM; Leen, SB; Brádaigh, CMÓ, An XFEM-based methodology for fatigue delamination and permeability of composites, Compos Struct, 107, 205-218 (2014) · doi:10.1016/j.compstruct.2013.07.050
[18] Gültekin, O.; Dal, H.; Holzapfel, GA, A phase-field approach to model fracture of arterial walls: Theory and finite element analysis, Comput Methods Appl Mech Eng, 312, 542-566 (2016) · Zbl 1439.74198 · doi:10.1016/j.cma.2016.04.007
[19] Gültekin, O.; Dal, H.; Holzapfel, GA, Numerical aspects of failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model, Comput Methods Appl Mech Eng, 331, 23-52 (2018) · Zbl 1439.74199 · doi:10.1016/j.cma.2017.11.008
[20] Hashin, Z., Failure criteria for unidirectional fiber composites, J Appl Mech, 47, 329-334 (1980) · Zbl 0468.73123 · doi:10.1115/1.3153664
[21] Hashin, Z., Finite thermoelastic fracture criterion with application to laminate cracking analysis, J Mech Phys Solids, 44, 1129-1145 (1996) · doi:10.1016/0022-5096(95)00080-1
[22] Hill, R., The mathematical theory of plasticity (1998), New York: Oxford University Press, New York · Zbl 0923.73001
[23] Holzapfel, GA, Nonlinear solid mechanics. A continuum approach for engineering (2000), Chichester: Wiley, Chichester · Zbl 0980.74001
[24] Holzapfel, GA; Gasser, TC; Ogden, RW, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J Elast, 61, 1-48 (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[25] Li, B.; Peco, C.; Millán, D.; Arias, I.; Arroyo, M., Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, Int J Numer Methods Eng, 102, 711-727 (2015) · Zbl 1352.74290 · doi:10.1002/nme.4726
[26] Marsden, JE; Hughes, TJR, Mathematical foundations of elasticity (1994), New York: Dover, New York
[27] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int J Numer Methods Eng, 83, 1273-1311 (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[28] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput Methods Appl Mech Eng, 199, 2765-2778 (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[29] Miehe, C.; Schänzel, LM; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solid, Comput Methods Appl Mech Eng, 294, 449-485 (2015) · Zbl 1423.74838 · doi:10.1016/j.cma.2014.11.016
[30] Miehe, C.; Hofacker, M.; Schänzel, LM; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput Methods Appl Mech Eng, 294, 486-522 (2015) · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[31] Miehe, C.; Dal, H.; Schänzel, LM; Raina, A., A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles, Int J Numer Methods Eng, 106, 683-711 (2016) · Zbl 1352.74116 · doi:10.1002/nme.5133
[32] Nairn, JA, The strain-energy release rate of composite microcracking-a variational approach, J Compos Mater, 23, 1106-1129 (1989) · doi:10.1177/002199838902301102
[33] Naghipour, P.; Bartsh, M.; Voggenreiter, H., Simulation and experimental validation of mixed mode delamination in multidirectional CF/PEEK laminates under fatigue loading, Int J Solids Struct, 48, 1070-1081 (2011) · Zbl 1236.74276 · doi:10.1016/j.ijsolstr.2010.12.012
[34] Naghipour P (2011) Numerical simulations and experimental investigations on quasi-static and cyclic mixed mode delamination of multidirectional CFRP laminates. Ph.D. Thesis, University of Stuttgart
[35] Naghipour, P.; Schneider, J.; Bartsch, M.; Hausmann, J.; Voggenreiter, H., Fracture simulation of CFRP laminates in mixed mode bending, Eng Fract Mech, 76, 2821-2833 (2009) · doi:10.1016/j.engfracmech.2009.05.009
[36] Nguyen, T-T; Réthéro, J.; Yvonnet, J.; Baietto, M-C, Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials, Comput Mech, 60, 289-314 (2017) · Zbl 1386.74128 · doi:10.1007/s00466-017-1409-0
[37] Puck, A.; Schürmann, H., Failure analysis of FRP laminates by means of physically based phenomenological models, Compos Sci Technol, 58, 1045-1067 (1998) · doi:10.1016/S0266-3538(96)00140-6
[38] Qiu, G.; Pence, T., Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids, J Elast, 49, 1-30 (1997) · Zbl 0964.74008 · doi:10.1023/A:1007410321319
[39] Reinoso, J.; Arteiro, A.; Paggi, M.; Camanho, PP, Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach, Compos Sci Technol, 58, 205-216 (2017) · doi:10.1016/j.compscitech.2017.07.020
[40] Schreiber, C.; Kuhn, C.; Müller, R., Phase field modeling of brittle fracture in materials with anisotropic fracture resistance, PAMM, 18, e201800113 (2018)
[41] Schröder, J.; Neff, P., Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int J Solids Struct, 40, 401-445 (2003) · Zbl 1033.74005 · doi:10.1016/S0020-7683(02)00458-4
[42] Soden, PD; Hinton, MJ; Kaddour, AS; Hinton, M.; Soden, PD; Kaddour, A-S, Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates, Failure criteria in fibre-reinforced polymer composites, 30-51 (2004), Amsterdam: Elsevier, Amsterdam
[43] Spencer, A., Deformations of fibre-reinforced materials (1972), Oxford: Oxford University Press, Oxford · Zbl 0238.73001
[44] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M-A, Phase-field modeling of fracture in anisotropic brittle solids, Int J Non-Linear Mech, 97, 1-21 (2017) · doi:10.1016/j.ijnonlinmec.2017.06.018
[45] Talreja, R.; Singh, CV, Damage and failure of composite materials (2012), New York: Cambridge University Press, New York
[46] Talreja, R., Assessment of the fundamentals of failure theories for composite materials, Compos Sci Technol, 105, 190-201 (2014) · doi:10.1016/j.compscitech.2014.10.014
[47] Tsai, SW; Wu, EM, General theory of strength for anisotropic materials, J Compos Mater, 5, 58-80 (1971) · doi:10.1177/002199837100500106
[48] Turon, A.; Dávila, CG; Camanho, PP; Costa, J., An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Eng Fract Mech, 74, 1665-1682 (2007) · doi:10.1016/j.engfracmech.2006.08.025
[49] von Mises, R., Mechanik der festen Körper im plastisch deformablen Zustand, Göttin Nachr Math Phys, 1, 582-592 (1913) · JFM 44.0918.06
[50] Wang, Y.; Waisman, H., Progressive delamination analysis of composite materials using XFEM and a discrete damage zone mode, Comput Mech, 55, 1-26 (2015) · Zbl 1311.74012 · doi:10.1007/s00466-014-1079-0
[51] Wolfe, WE; Butalia, TS, A strain-energy based failure criterion for non-linear analysis of composite laminates subjected to biaxial loading, Compos Sci Technol, 58, 1107-1124 (1998) · doi:10.1016/S0266-3538(96)00145-5
[52] Yang, Q.; Cox, B., Cohesive models for damage evolution in laminated composites, Int J Fract, 133, 107-137 (2005) · Zbl 1196.74231 · doi:10.1007/s10704-005-4729-6
[53] Yazdani, S.; Rust, WJH; Wriggers, P., An XFEM approach for modelling delamination in composite laminates, Compos Struct, 135, 353-364 (2016) · doi:10.1016/j.compstruct.2015.09.035
[54] Zhao, L.; Gong, Y.; Zhang, J.; Chen, Y.; Fei, B., Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements, Compos Struct, 116, 509-522 (2016) · doi:10.1016/j.compstruct.2014.05.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.