×

A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media. (English) Zbl 1439.74373

Summary: The onset and propagation of the cracks and compaction bands, and the interactions between them in the host matrix, are important for numerous engineering applications, such as hydraulic fracture and \(\mathrm{CO_2}\) storage. While crack may become flow conduit that leads to leakage, formation of compaction band often accompanies significant porosity reduction that prevents fluid to flow through. The objective of this paper is to present a new unified framework that predicts both the onset, propagation and interactions among cracks and compaction bands via an eigen-deformation approach. By extending the generalized Griffith’s theory, we formulate a unified nonlocal scheme that is capable to predict the fluid-driven fracture and compression-driven anti-crack growth while incorporating the cubic law to replicate the induced anisotropic permeability changes triggered by crack and anti-crack growth. A set of numerical experiments are used to demonstrate the robustness and efficiency of the proposed model.

MSC:

74R10 Brittle fracture
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Haimson, Bezalel; Fairhurst, Charles, Initiation and extension of hydraulic fractures in rocks, Soc. Pet. Eng. J., 7, 03, 310-318 (1967)
[2] Zoback, M. D.; Rummel, F.; Jung, R.; Raleigh, C. B., Laboratory hydraulic fracturing experiments in intact and pre-fractured rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 14, 49-58 (1977)
[3] Detournay, Emmanuel, Mechanics of hydraulic fractures, Annu. Rev. Fluid Mech., 48, 311-339 (2016) · Zbl 1356.74181
[4] Antonellini, Marco A.; Aydin, Atilla; Pollard, David D., Microstructure of deformation bands in porous sandstones at arches national park, utah, J. Struct. Geol., 16, 7, 941-959 (1994)
[5] Haimson, B. C., Fracture-like borehole breakouts in high-porosity sandstone: Are they caused by compaction bands?, Phys. Chem. Earth, 26, 1, 15-20 (2001)
[6] Schultz, Richard A.; Okubo, Chris H.; Fossen, Haakon, Porosity and grain size controls on compaction band formation in jurassic navajo sandstone, Geophys. Res. Lett., 37, 22 (2010)
[7] Sun, WaiChing; Andrade, José E.; Rudnicki, John W.; Eichhubl, Peter, Connecting microstructural attributes and permeability from 3d tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett., 38, 10 (2011)
[8] Baud, Patrick; Klein, Emmanuelle; Wong, Teng-fong, Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity, J. Struct. Geol., 26, 4, 603-624 (2004)
[9] Fossen, Haakon; Schultz, Richard A.; Torabi, Anita, Conditions and implications for compaction band formation in the navajo sandstone, utah, J. Struct. Geol., 33, 10, 1477-1490 (2011)
[10] Sun, WaiChing; Andrade, Jose E.; Rudnicki, John W., Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability, Internat. J. Numer. Methods Engrg., 88, 12, 1260-1279 (2011) · Zbl 1242.74165
[11] Holcomb, D. J.; Olsson, W. A., Compaction localization and fluid flow, J. Geophys. Res., 108, B6 (2003)
[12] Haimson, B. C.; Song, I., Laboratory study of borehole breakouts in cordova cream: a case of shear failure mechanism, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 1047-1056 (1993)
[13] Lee, M.; Haimson, B., Laboratory study of borehole breakouts in lac du bonnet granite: a case of extensile failure mechanism, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 1039-1045 (1993)
[14] Haimson, B.; Lee, H., Borehole breakouts and compaction bands in two high-porosity sandstones, Int. J. Rock Mech. Min. Sci., 41, 2, 287-301 (2004)
[15] Sternlof, Kurt R.; Rudnicki, John W.; Pollard, David D., Anticrack inclusion model for compaction bands in sandstone, J. Geophys. Res., 110, B11 (2005)
[16] Stanchits, Sergei; Fortin, Jerome; Gueguen, Yves; Dresen, George, Initiation and propagation of compaction bands in dry and wet bentheim sandstone, (Rock Physics and Natural Hazards (2009), Springer), 846-868
[17] Charalampidou, Elli-Maria; Hall, Stephen A.; Stanchits, Sergei; Viggiani, Gioacchino; Lewis, Helen, Shear-enhanced compaction band identification at the laboratory scale using acoustic and full-field methods, Int. J. Rock Mech. Min. Sci., 67, 240-252 (2014)
[18] Mollema, P. N.; Antonellini, M. A., Compaction bands: a structural analog for anti-mode i cracks in aeolian sandstone, Tectonophysics, 267, 1, 209-228 (1996)
[19] Rudnicki, J. W.; Sternlof, K. R., Energy release model of compaction band propagation, Geophys. Res. Lett., 32, 16 (2005)
[20] Rudnicki, J. W., Models for compaction band propagation, Geological Society, London, Special Publications, 284, 1, 107-125 (2007)
[21] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[22] Bourdin, Blaise; Francfort, Gilles A.; Marigo, Jean-Jacques, The variational approach to fracture, J. Elast., 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[23] Issen, K. A.; Rudnicki, J. W., Theory of compaction bands in porous rock, Phys. Chem. Earth, 26, 1, 95-100 (2001)
[24] Aydin, Atilla; Borja, Ronaldo I; Eichhubl, Peter, Geological and mathematical framework for failure modes in granular rock, J. Struct. Geol., 28, 1, 83-98 (2006)
[25] Chemenda, Alexandre I., Origin of compaction bands: Anti-cracking or constitutive instability?, Tectonophysics, 499, 1, 156-164 (2011)
[26] Liu, Chun; Pollard, David D; Deng, Shang; Aydin, Atilla, Mechanism of formation of wiggly compaction bands in porous sandstone: 1. observations and conceptual model, J. Geophys. Res., 120, 12, 8138-8152 (2015)
[27] Katsman, R.; Aharonov, E.; Scher, H., Numerical simulation of compaction bands in high-porosity sedimentary rock, Mech. Mater., 37, 1, 143-162 (2005)
[28] Wang, Baoshan; Chen, Yong; Wong, Teng-fong, A discrete element model for the development of compaction localization in granular rock, Journal of Geophysical Research: Solid Earth, 113, B3 (2008)
[29] Lee, H.; Moon, T.; Haimson, B. C., Borehole breakouts induced in arkosic sandstones and a discrete element analysis, Rock Mech. Rock Eng., 49, 4, 1369-1388 (2016)
[30] Boone, T. J.; Wawrzynek, P. A.; Ingraffea, A. R., Simulation of the fracture process in rock with application to hydrofracturing, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 23, 255-265 (1986)
[31] Secchi, S.; Schrefler, B. A., A method for 3-d hydraulic fracturing simulation, Int. J. Fract., 178, 1-2, 245-258 (2012)
[32] Carrier, Benoit; Granet, Sylvie, Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312-328 (2012)
[33] Armero, Francisco; Callari, C., An analysis of strong discontinuities in a saturated poro-plastic solid, Internat. J. Numer. Methods Engrg., 46, 10, 1673-1698 (1999) · Zbl 0971.74029
[34] Gupta, P.; Duarte, C. A., Simulation of non-planar three-dimensional hydraulic fracture propagation, Int. J. Numer. Anal. Methods Geomech., 38, 13, 1397-1430 (2014)
[35] Salimzadeh, Saeed; Khalili, Nasser, A three-phase xfem model for hydraulic fracturing with cohesive crack propagation, Comput. Geotech., 69, 82-92 (2015)
[36] Khoei, Amir R., Extended Finite Element Method: Theory and Applications (2014), John Wiley & Sons · Zbl 1315.74001
[37] Begley, J. A.; Landes, J. D., The j integral as a fracture criterion, (Fracture Toughness: Part II (1972), ASTM International)
[38] Linder, Christian; Armero, F., Finite elements with embedded branching, Finite Elem. Anal. Des., 45, 4, 280-293 (2009)
[39] Amor, Hanen; Marigo, Jean-Jacques; Maurini, Corrado, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[40] Borden, Michael J.; Verhoosel, Clemens V.; Scott, Michael A.; Hughes, Thomas J. R.; Landis, Chad M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012) · Zbl 1253.74089
[41] Miehe, Christian; Mauthe, Steffen, Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[42] Clayton, J. D.; Knap, J., Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1439.74346
[43] Lee, Sanghyun; Wheeler, Mary F.; Wick, Thomas, Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[44] Farrell, Patrick E.; Maurini, Corrado, Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg. (2016)
[45] Schmidt, Bernd; Fraternali, Fernando; Ortiz, Michael, Eigenfracture: an eigendeformation approach to variational fracture, Multiscale Model. Simul., 7, 3, 1237-1266 (2009) · Zbl 1173.74040
[46] Pandolfi, Anna; Ortiz, Michael, An eigenerosion approach to brittle fracture, Internat. J. Numer. Methods Engrg., 92, 8, 694-714 (2012) · Zbl 1352.74299
[47] Terzaghi, von K., The shearing resistance of saturated soils and the angle between the planes of shear, (Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, volume 1 (1936), Harvard University Press Cambridge, MA), 54-56
[48] Biot, Maurice A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[49] Nur, Amos; Byerlee, J. D., An exact effective stress law for elastic deformation of rock with fluids, J. Geophys. Res., 76, 26, 6414-6419 (1971)
[50] Miehe, Christian; Hofacker, Martina; Welschinger, Fabian, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778 (2010) · Zbl 1231.74022
[51] Clayton, J. D.; Knap, J., A geometrically nonlinear phase field theory of brittle fracture, Int. J. Fract., 189, 2, 139-148 (2014)
[52] Mitchell, Stephanie J.; Pandolfi, Anna; Ortiz, Michael, Effect of brittle fracture in a metaconcrete slab under shock loading, J. Eng. Mech., 142, 4, 04016010 (2016)
[53] Vajdova, Veronika; Wong, Teng-Fong, Incremental propagation of discrete compaction bands: Acoustic emission and microstructural observations on circumferentially notched samples of bentheim, Geophys. Res. Lett., 30, 14 (2003)
[54] Eshelby, John D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 241 (1957), The Royal Society), 376-396 · Zbl 0079.39606
[55] Katsman, R.; Aharonov, E., A study of compaction bands originating from cracks, notches, and compacted defects, J. Struct. Geol., 28, 3, 508-518 (2006)
[56] Rudnicki, John W., Eshelby’s Technique for Analyzing inhomogeneities in Geomechanics (2011), Springer
[57] Pride, Steven R.; Berryman, James G., Linear dynamics of double-porosity dual-permeability materials. i. governing equations and acoustic attenuation, Phys. Rev. E, 68, 3, Article 036603 pp. (2003)
[58] Choo, Jinhyun; White, Joshua A; Borja, Ronaldo I., Hydromechanical modeling of unsaturated flow in double porosity media, Int. J. Geomech., D4016002 (2016)
[59] Foster, Craig D.; Nejad, Talisa Mohammad, Embedded discontinuity finite element modeling of fluid flow in fractured porous media, Acta Geotech., 8, 1, 49-57 (2013)
[60] Witherspoon, Paul Adams; Wang, Joseph S. Y.; Iwai, K.; Gale, John E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 6, 1016-1024 (1980)
[61] Zimmerman, Robert W.; Yeo, In-Wook, Fluid flow in rock fractures: From the Navier-Stokes equations to the cubic law, Dynamics of fluids in fractured rock, 213-224 (2000)
[62] Khoei, A. R.; Vahab, M.; Haghighat, E.; Moallemi, S., A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-fem technique, Int. J. Fract., 188, 1, 79-108 (2014)
[63] de Borst, René, Fluid flow in fractured and fracturing porous media: A unified view, Mech. Res. Commun. (2016)
[64] Pyrak-Nolte, Laura J.; Myer, Larry R.; Cook, Neville G. W.; Witherspoon, Paul A., Hydraulic and mechanical properties of natural fractures in low permeability rock, (6th ISRM Congress (1987), International Society for Rock Mechanics)
[65] Renshaw, Carl E., On the relationship between mechanical and hydraulic apertures in rough-walled fractures, J. Geophys. Res., 100, B12, 24629-24636 (1995)
[66] Chen, Z.; Narayan, S. P.; Yang, Z.; Rahman, S. S., An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock, International Journal of Rock Mechanics and Mining Sciences, 37, 7, 1061-1071 (2000)
[67] de Borst, René; Verhoosel, Clemens V., Gradient damage vs phase-field approaches for fracture: Similarities and differences, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1439.74347
[68] Bear, Jacob, Dynamics of Fluids in Porous Media (1972), Elsevier Publishing Company: Elsevier Publishing Company New York · Zbl 1191.76001
[69] Nooru-Mohamed, Mohamed Buhary, Mixed-mode fracture of concrete: an experimental approach, (TU Delft (1992), Delft University of Technology)
[70] Sun, WaiChing, A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoengin., 8, 2, 65-75 (2013)
[71] Bésuelle, Pierre; Rudnicki, John W., Localization: shear bands and compaction bands, Internat. Geophys., 89, 219-321 (2003)
[72] Na, SeonHong; Sun, WaiChing, Wave propagation and strain localization in a fully saturated softening porous medium under the non-isothermal conditions, Int. J. Numer. Anal. Methods Geomech. (2016), n/a-n/a. http://dx.doi.org/10.1002/nag.2505
[73] Leeman, E. R., Absolute rock stress measurements using a borehole trepanning stress-relieving technique, (The 6th US Symposium on Rock Mechanics, USRMS (1964), American Rock Mechanics Association)
[74] Wang, J. S.Y.; Elsworth, D., Permeability changes induced by excavation in fractured tuff, (Proceedings of the 37th US Rock Mechanics Symposium, Rock Mechanics for Industry, volume 2 (1999)), 751-757
[75] Zheng, Ziqiong; Kemeny, John; Cook, Neville G. W., Analysis of borehole breakouts, Journal of Geophysical Research: Solid Earth, 94, B6, 7171-7182 (1989)
[76] Zoback, Mark D.; Moos, Daniel; Mastin, Larry; Anderson, Roger N., Well bore breakouts and in situ stress, J. Geophys. Res., 90, B7, 5523-5530 (1985)
[77] Haimson, B., Micromechanisms of borehole instability leading to breakouts in rocks, International Journal of Rock Mechanics and Mining Sciences, 44, 2, 157-173 (2007)
[78] Katsman, R.; Aharonov, E.; Haimson, B. C., Compaction bands induced by borehole drilling, Acta Geotech., 4, 3, 151-162 (2009)
[79] Lee, Myung W., Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones, US Department of the Interior, US Geological Survey (2005)
[80] Baker, Jack W.; Seifried, Andrew; Andrade, Jose E.; Chen, Qiushi, Characterization of random fields at multiple scales: an efficient conditional simulation procedure and applications in geomechanics, Appl. Stat. Probab. Civil Eng., 347 (2011)
[81] Dunn, David E; LaFountain, Lester J.; Jackson, Robert E., Porosity dependence and mechanism of brittle fracture in sandstones, J. Geophys. Res., 78, 14, 2403-2417 (1973)
[82] Wheeler, M. F.; Wick, T.; Wollner, W., An augmented-lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[83] Adachi, José I.; Detournay, Emmanuel, Plane strain propagation of a hydraulic fracture in a permeable rock, Eng. Fract. Mech., 75, 16, 4666-4694 (2008)
[84] Holcomb, David; Rudnicki, John W.; Issen, Kathleen A.; Sternlof, Kurt, Compaction localization in the earth and the laboratory: state of the research and research directions, Acta Geotech., 2, 1, 1-15 (2007)
[85] Sun, W.; Ostien, J. T.; Salinger, A. G., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 16, 2755-2788 (2013)
[86] Sun, W.; Chen, Q.; Ostien, J. T., Modeling hydro-mechanical responses of strip and circular footings on saturated collapsible geomaterials, Acta Geotech. (2014)
[87] Sun, WaiChing, A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 11, 798-839 (2015) · Zbl 1352.76116
[88] Wang, Kun; Sun, WaiChing, A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Comput. Methods Appl. Mech. Engrg., 304, 546-583 (2016) · Zbl 1423.76286
[89] Wang, Kun; Sun, Waiching, A semi-implicit micropolar discrete-to-continuum method for granular materials, (Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V., Proceedings of European Congress on Computational Methods in Applied Science and Engineering (2016), Crete Island), 5-10, June · Zbl 1423.76286
[90] White, Joshua A.; Borja, Ronaldo I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197, 49, 4353-4366 (2008) · Zbl 1194.74480
[91] Truty, Andrzej; Zimmermann, Thomas, Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media, Comput. Methods Appl. Mech. Engrg., 195, 13, 1517-1546 (2006) · Zbl 1116.74067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.