×

Crack initiation in brittle materials. (English) Zbl 1138.74042

Summary: We study the crack initiation in a hyperelastic body governed by a Griffith-type energy. We prove that during a load process through time-dependent boundary data of the type \(t \rightarrow tg (x)\) and in the absence of strong singularities (e.g., this is the case of homogeneous isotropic materials) the crack initiation is brutal, that is, a big crack appears after a positive time \(t_{i} > 0\). Conversely, in the presence of a point \(x\) of strong singularity, a crack will depart from \(x\) at the initial time of loading and with zero velocity. We prove these facts for admissible cracks belonging to a large class of closed one-dimensional sets with a finite number of connected components. The main tool we employ is a local minimality result for the functional
\[ \varepsilon(\nu, \Gamma):=\int_{\Omega} f(x,\nabla v)\,dx+ k{\mathcal{H}}^{1} (\Gamma), \]
where \(\Omega \subseteq {\mathbb{R}}^{2}, k > 0\) and \(f\) is a suitable Carathéodory function. We prove that if the uncracked configuration \(u\) of \(\Omega\) relative to a boundary displacement \(\psi\) has at most uniformly weak singularities, then configurations \((u_\Gamma, \Gamma)\) with \({\mathcal{H}}^{1} (\Gamma)\) small enough are such that \(\varepsilon(u,\emptyset) < \varepsilon(u_{\Gamma},\Gamma)\).

MSC:

74R10 Brittle fracture
74G65 Energy minimization in equilibrium problems in solid mechanics

References:

[1] Ambrosio L. (1989) A compactness theorem for a new class of functions of bounded variations. Boll. Un. Mat. Ital. 3-B: 857–881 · Zbl 0767.49001
[2] Ambrosio L. (1990) Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111: 291–322 · Zbl 0711.49064 · doi:10.1007/BF00376024
[3] Ambrosio L. (1995) A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3: 127–137 · Zbl 0837.49011 · doi:10.1007/BF01190895
[4] Ambrosio L., Fusco N., Pallara D. (2000) Functions of Bounded Variations and Free Discontinuity Problems. Clarendon, Oxford · Zbl 0957.49001
[5] Ambrosio L. Caselles V., Masnou S., Morel J.-M. (2001) Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3: 39–92 · Zbl 0981.49024 · doi:10.1007/PL00011302
[6] Astala K. (1994) Area distortion of quasiconformal mappings. Acta Math. 103(1): 37–60 · Zbl 0815.30015 · doi:10.1007/BF02392568
[7] Bonnetier E., Chambolle A. (2002) Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62:1093–1121 · Zbl 1001.49017 · doi:10.1137/S0036139900368571
[8] Boyarski B. (1955) Homeomorphic solutions of Beltrami systems (Russian). Dokl. Akad. Nauk SSSR (N.S) 102: 661–664
[9] Boyarski B. (1957) Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian). Mat. Sb. N.S. 43(85): 451–503
[10] Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973
[11] Caffarelli L., Peral I. (1998) On W 1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51: 1–21 · Zbl 0906.35030 · doi:10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
[12] Chambolle A. (2003) A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167: 211–233 · Zbl 1030.74007 · doi:10.1007/s00205-002-0240-7
[13] Dal Maso G., Morel J.-M., Solimini S. (1992) A variational method in image segmentation: existence and approximation results. Acta Math. 168(1–2): 89–151 · Zbl 0772.49006 · doi:10.1007/BF02392977
[14] Dal Maso G., Toader R. (2002) A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162: 101–135 · Zbl 1042.74002 · doi:10.1007/s002050100187
[15] Dal Maso G., Toader R. (2002) A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Methods Appl. Sci. 12: 1773–1799 · Zbl 1205.74149 · doi:10.1142/S0218202502002331
[16] David G. (2005) Singular Sets of Minimizers for the Mumford–Shah Functional. Progress in Mathematics. Birkhaüser, Basel · Zbl 1086.49030
[17] De Giorgi E., Carriero M., Leaci A. (1989) Existence theorem for a minimum problem with free discontinuity set. Arch Ration. Mech. Anal. 108: 195–218 · Zbl 0682.49002 · doi:10.1007/BF01052971
[18] Ebobisse F., Ponsiglione M. (2004) A duality approach for variational problems in domains with cracks. J. Convex Anal. 11: 17–40 · Zbl 1064.31002
[19] Francfort G.A., Larsen C.J. (2003) Existence and convergence for quasistatic evolution in brittle fracture. Commun. Pure Appl. Math. 56: 1465–1500 · Zbl 1068.74056 · doi:10.1002/cpa.3039
[20] Francfort G.A., Marigo J.-J. (1998) Revisiting brittle fractures as an energy minimization problem. J. Mech. Phys. Solids 46: 1319–1342 · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[21] Grisvard P. (1985) Elliptic Problems in Nonsmooth Domains. Pitman, Boston · Zbl 0695.35060
[22] Leonetti F., Nesi V. (1997) Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton. J. Math. Pure Appl. 76: 109–124 · Zbl 0869.35019 · doi:10.1016/S0021-7824(97)89947-3
[23] Li Y., Nirenberg L. (2003) Estimates for elliptic systems from composite material. Dedicated to the memory of Jürgen K. Moser. Commun. Pure Appl. Math. 56: 892–925 · Zbl 1125.35339 · doi:10.1002/cpa.10079
[24] Li Y., Vogelius M. (2000) Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153: 91–151 · Zbl 0958.35060 · doi:10.1007/s002050000082
[25] Maddalena F., Solimini S. (2001) Lower semicontinuity properties of functionals with free discontinuities, Arch. Ration. Mech. Anal 159(4): 273–294 · Zbl 1013.49010 · doi:10.1007/s002050100153
[26] Meyers N.G. (1963) An L p -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17: 189–206 · Zbl 0127.31904
[27] Mielke, A.: Analysis of energetic models for rate-independent materials. In: Proceedings of the International Congress of Mathematicians,Vol. III (Beijing, 2002), pp. 817–828, Higher Ed. Press, Beijing, 2002 · Zbl 1018.74007
[28] Morel J.-M., Solimini S. (1995) Variational Methods in Image Segmentation. Birkhaüser, Boston
[29] Mumford D., Shah J. (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42: 577–685 · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[30] Rockafellar R.T. (1970) Convex Analysis. Princeton Mathematical Series, No. 28 Princeton University Press, Princeton · Zbl 0193.18401
[31] Solimini S. (1997) Simplified excision techniques for free discontinuity problems in several variables. J. Funct. Anal. 151: 1–34 · Zbl 0891.49007 · doi:10.1006/jfan.1996.3081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.