Skip to main content
Log in

A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Griffith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle material is proposed. The method treats the junction and coalescence of multiple cracks, and junction criterion and coalescence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set approximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above theories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka, K., Akiniwa, Y., Shimizu, K.: Propagation and closure of small cracks in SiC particulate reinforced aluminum alloy in high cycle and low cycle fatigue. Engineering Fracture Mechanics 55, 751–762 (1996)

    Article  Google Scholar 

  2. Lawler, J.: Hybrid fiber-reinforcement in mortar and concrete. [Ph.D. Thesis]. Department of Civil and Environmental Engineering, Northwestern University, USA (2001)

    Google Scholar 

  3. Barpi, F., Valente, S.: Size-effects bifurcation phenomena during multiple cohesive crack propagation. International Journal of Solids and Structures 35, 1851–1861 (1998)

    Article  MATH  Google Scholar 

  4. Datsyshin, A.P., Savruk, M.P.: A system of arbitrarily oriented cracks in elastic solids. Journal of Applied Mathematics and Mechanics 37, 306–332 (1973)

    Article  Google Scholar 

  5. Kachanov, M.: Elastic solids with many cracks: A simple method of analysis. International Journal of Solids and Structures 23, 23–43 (1987)

    Article  MATH  Google Scholar 

  6. Kachanov, M.: A simple technique of stress analysis in elastic solids with many cracks. International Journal of Fracture 28, R11–R19 (1985)

    Google Scholar 

  7. Rubinstein, A.: Macrocrack interaction with semi-infinite microcrack array. International Journal of Fracture 27, 113–119 (1985)

    Google Scholar 

  8. Rubinstein, A.: Macrocrack-mircodefect interaction. Journal of Applied Mechanics 53, 505–510 (1996)

    Article  Google Scholar 

  9. Freij-Ayoub, R., Dyskin, A.V., Galybin, A.N.: The dislocation approximation for calculating crack interaction. International Journal of Fracture 86, L57–L62 (1997)

    Google Scholar 

  10. Chen, Y.Z.: General case of multiple crack problems in an infinite plate. Engineering FractureMechanics 20, 591–597 (1984)

    Google Scholar 

  11. Bolotin, V.V.: Reliability against fatigue fracture in presence of sets of cracks. Engineering Fracture Mechanics 53, 753–759 (1996)

    Article  Google Scholar 

  12. Yang, J.N., Manning, S.D.: A simple second order approximation for stochastic crack growth analysis. Engineering Fracture Mechanics 53, 677–686 (1996)

    Article  Google Scholar 

  13. Lua, Y.J., Liu, W.K., Belytschko, T.: A stochastic damage model for the rupture prediction of a multi-phase solid, Part II: Statistical approach. International Journal of Fracture 55, 341–361 (1992)

    Article  Google Scholar 

  14. Liu, W.K., Chen, Y., Belytschko, T., et al.: Three reliability methods for fatigue crack growth. Engineering Fracture Mechanics 33, 733–752 (1996)

    Article  Google Scholar 

  15. McDowell, D.: An engineering model for propagation of small cracks in fatigue, Engineering FractureMechanics 56, 357–377 (1997)

    Google Scholar 

  16. Rybaczuk, M., Stoppel, P.: The fractal growth of fatigue defects in materials. International Journal of Fracture 103, 71–94 (2000)

    Article  Google Scholar 

  17. Lua, Y.J., Liu, W.K., Belytschko, T.: Elastic interactions of a fatigue crack with a micro-defect by the mixed boundary integral equation method. International Journal for Numerical Methods in Engineering 36, 2743–2759 (1993)

    Article  MATH  Google Scholar 

  18. Carpineri, A., Monetto, I.: Snap-back analysis of fracture evolution in multi-cracked solids using boundary element method. International Journal of Fracture 98, 225–241 (1990)

    Article  Google Scholar 

  19. Ma, H., Guo, Z., Dhanasekar, M., et al.: Efficient solution of multiple cracks in great numer using eigen COD boundary integral equations with iteration procedure. Engineering Analysis with Boundary Elements 37, 487–500 (2013)

    Article  MathSciNet  Google Scholar 

  20. Budyn, E., Zi, G., Moes, N., et al.: A method for multiple crack growth in brittle materials without remeshing. International Journal for Numerical Methods in Engineering 61, 1741–1770 (2004)

    Article  MATH  Google Scholar 

  21. Lo, S.H., Dong, C.Y., Cheung, Y.K.: Integral equation approach for 3D multiple-crack problems. Engineering Fracture Mechanics 72, 1830–1840 (2005)

    Article  Google Scholar 

  22. Krysl, P., Belytschko, T.: The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Inernational Journal for Numerical methods in Engineering 44, 767–800 (1999)

    Article  MATH  Google Scholar 

  23. Rabczuk, T., Bordas, S., Zi, G.: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational mechanics 40, 473–495 (2007)

    Article  MATH  Google Scholar 

  24. Miao, Y., He, T.G., Yang, Q., et al.: Multi-domain hybrid boundary node method for evaluating top-down crack in asphalt pavements. Engineering Analysis with Boundary Element 34, 755–760 (2010)

    Article  MATH  Google Scholar 

  25. Miao, Y., Wang, Q., Liao, B.H., et al.: A dual hybrid boundary node method for 2D elastodynamics problems. Computer Modeling in Engineering & Science 53, 1–22 (2009)

    MATH  Google Scholar 

  26. Miao, Y., He, T.G., Luo, H., et al.: Dual hybrid boundary node method for solving transient dynamic fracture problems. CMES: Computer Modeling in Engineering & Science 85, 481–498 (2012)

    MathSciNet  Google Scholar 

  27. Yan, F., Feng, X.T., Pan, P.Z., et al.: A continuousdiscontinuous cellular automaton method for regular frictional contact problems. Archive of Applied Mechanics 83, 1239–1255 (2013)

    Article  Google Scholar 

  28. Pan, P.Z., Yan, F., Feng, X.T.: Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton. Computer & Geosciences 42, 87–99 (2012)

    Article  Google Scholar 

  29. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Inernational Journal for Numerical methods in Engineering 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  30. Osher, S., Sethian, J.A.: Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stolarska, M., Chopp, D.L., Moes, N., et al.: Modelling crack growth by level sets in the extended finite element method. Inernational Journal for Numerical Methods in Engineering 51, 943–960 (2001)

    Article  MATH  Google Scholar 

  32. Sethian, J.: Evolution, implementation and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics 169, 503–555 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rao, Q.H., Sun, Z.Q., Stephansson, O., et al.: Shear fracture (Mode II) of brittle rock. International Journal of Rock and Mining Science 40, 355–375 (2003)

    Article  Google Scholar 

  34. Bobet, A., Einstein, H.H.: Numerical modeling of fracture coalescence in a model rock material. International Journal of Fracture 92, 221–252 (1998)

    Article  Google Scholar 

  35. Li, S.C., Chen, Y.M.: Numerical manifold method for crack tip fields. China Civil Engineering Journal 38, 96–102 (2005)

    Google Scholar 

  36. Wong, R.H.C., Chau, K.T., Tang, C.A., et al.: Analysis of crack coalescence in rock-like materials containing three flaws: Part I. Experimental approach. International Journal of Rock Mechanics and Mining Science 38, 909–924 (2001)

    Article  Google Scholar 

  37. Zhou, X.P., Yang, H.Q., Dong, J.: Numerical simulation of multiple-crack growth under compressive loads. Chinese Journal of Geotechnical Engineering 32, 192–197 (2010)

    Google Scholar 

  38. Feng, X.T., Ding, W.X., Zhang, D.X.: Multi-crack interaction in limestone subject to stress and flow of chemical solution. International Journal of Rock Mechanics and Mining Science 46, 159–171 (2009)

    Article  Google Scholar 

  39. Pan, P.Z., Ding, W.X., Feng, X.T. et al.: Research on influence of pre-existing crack geometrical and material properties on crack propagation in rocks. Chinese Journal of Rock Mechanics and Engineering 27, 1882–1889 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, F., Feng, XT., Pan, PZ. et al. A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material. Acta Mech Sin 30, 73–83 (2014). https://doi.org/10.1007/s10409-014-0002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0002-4

Keywords

Navigation