×

The peridynamic formulation for transient heat conduction. (English) Zbl 1194.80010

Summary: In bodies where discontinuities, like cracks, emerge and interact, the classical equations for heat and mass transfer are not well suited. We propose a peridynamic model for transient heat (or mass) transfer which is valid when the body undergoes damage or evolving cracks. We use a constructive approach to find the peridynamic formulation for heat transfer and test the numerical convergence to the classical solutions in the limit of the horizon (the nonlocal parameter) going to zero for several one-dimensional problems with different types of boundary conditions. We observe an interesting property of the peridynamic solution: when two \(m\)-convergence curves, corresponding to two different horizons, for the solution at a point and an instant intersect, the intersection point is also the exact classical (local) solution. The present formulation can be easily extended to higher dimensions and be coupled with the mechanical peridynamic description for thermomechanical analyses of fracturing bodies, or for heat and mass transfer in bodies with evolving material discontinuities.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
74B99 Elastic materials
Full Text: DOI

References:

[1] Luciani, J. F.; Mora, P.; Virmont, J.: Nonlocal heat transport due to steep temperature gradients, Phys. rev. Lett. 51, No. 18, 1664-1667 (1983)
[2] Mahan, G. D.; Claro, F.: Nonlocal theory of thermal conductivity, Phys. rev. B 38, No. 3, 1963-1969 (1988)
[3] Sobolev, S. L.: Equations of transfer in non-local media, Int. J. Heat mass transfer 37, No. 14, 2175-2182 (1994) · Zbl 0926.74007 · doi:10.1016/0017-9310(94)90319-0
[4] Grmela, M.; Lebon, G.: Finite-speed propagation of heat: a nonlocal and nonlinear approach, Physica A 248, 428-441 (1998)
[5] Furmanski, P.: Effective macroscopic description for heat conduction in heteroneous materials, Int. J. Heat mass transfer 35, No. 11, 3047-3058 (1992) · Zbl 0765.73007 · doi:10.1016/0017-9310(92)90324-L
[6] Furmanski, P.: A mixture theory for heat conduction in heterogeneous media, Int. J. Heat mass transfer 37, No. 18, 2993-3002 (1994) · Zbl 0926.74005 · doi:10.1016/0017-9310(94)90353-0
[7] Eringen, A. C.; Edelen, D. G. B.: On nonlocal elasticity, Int. J. Eng. sci. 10, No. 3, 233-248 (1972) · Zbl 0247.73005 · doi:10.1016/0020-7225(72)90039-0
[8] Kunin, I. A.: Elastic media with microstructure I: One-dimensional models, (1982) · Zbl 0527.73002
[9] Eringen, C. A.: Theory of nonlocal thermoelasticity, Int. J. Eng. sci. 12, No. 12, 1063-1077 (1974) · Zbl 0289.73061 · doi:10.1016/0020-7225(74)90033-0
[10] Eringen, C. A.: Nonlocal theory of wave propagation in thermoelastic plates, Int. J. Eng. sci. 29, No. 7, 831-843 (1991) · Zbl 0749.73023 · doi:10.1016/0020-7225(91)90005-N
[11] Edelen, D. G. B.: Irreversible thermodynamics of nonlocal systems, Int. J. Eng. sci. 12, 607-631 (1974) · Zbl 0281.76007 · doi:10.1016/0020-7225(74)90039-1
[12] Shnaid, I.: Thermodynamically consistent description of heat conduction with finite speed of heat propagation, Int. J. Heat mass transfer 46, 3853-3863 (2003) · Zbl 1035.80002 · doi:10.1016/S0017-9310(03)00177-7
[13] Cox, B. N.; Gao, H.; Gross, D.; Rittel, D.: Modern topics and challenges in dynamic fracture, J. mech. Phys. solids 53, 565-596 (2005) · Zbl 1122.74487 · doi:10.1016/j.jmps.2004.09.002
[14] Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture, Int. J. Solids struct. 35, No. 22, 2959-2973 (1998)
[15] Jacobsson, L.; Persson, C.; Melin, S.: In-situ esem study of thermo-mechanical fatigue crack propagation, Mater. sci. Eng. A 496, No. 1 – 2, 200-208 (2008)
[16] Bazant, Z. P.; Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress, J. eng. Mech. 128, No. 11, 1119-1149 (2002)
[17] Fleck, N. A.; Hutchinson, J. W.: Phenomenological theory for strain gradient effects in plasticity, J. mech. Phys. solids 41, No. 12, 1825-1857 (1993) · Zbl 0791.73029 · doi:10.1016/0022-5096(93)90072-N
[18] Guo, Y.; Huang, Y.; Gao, H.; Zhuang, Z.; Hwang, K. C.: Taylor-based nonlocal theory of plasticity: numerical studies of the micro-indentation experiments and crack tip fields, Int. J. Solids struct. 38, No. 42-43, 7447-7460 (2001) · Zbl 1006.74079 · doi:10.1016/S0020-7683(01)00047-6
[19] Al-Rub, R. K. Abu; Voyiadjis, G. Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, Int. J. Plasticity 20, 1139-1182 (2004)
[20] Voyiadjis, G. Z.; Al-Rub, R. K. Abu: Gradient plasticity theory with a variable length scale parameter, Int. J. Solids struct. 42, 3998-4029 (2005) · Zbl 1120.74366 · doi:10.1016/j.ijsolstr.2004.12.010
[21] Evans, A. G.; Hutchinson, J. W.: A critical assessment of theories of strain gradient plasticity, Acta mater. 57, No. 5, 1675-1688 (2009)
[22] Silling, S. A.: Reformulation of elasticity theory for discontinuities and long-range forces, J. mech. Phys. solids 48, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[23] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E.: Peridynamic states and constitutive modeling, J. elasticity 88, 151-184 (2007) · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[24] White, F. M.: Heat and mass transfer, (1988)
[25] Silling, S. A.: Dynamic fracture modeling with a meshfree peridynamic code, Computational fluid and solid mechanics 2003, 641-644 (2003)
[26] Silling, S. A.; Askari, E.: A meshfree method based on the peridynamic model of solid mechanics, Comput. struct. 83, No. 17-18, 1526-1535 (2005)
[27] Macek, R. W.; Silling, S. A.: Peridynamics via finite element analysis, Finite elem. Anal. des. 43, No. 15, 1169-1178 (2007)
[28] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A.: Implementing peridynamics within a molecular dynamics code, Comput. phys. Commun. 179, No. 11, 777-783 (2008) · Zbl 1197.82014 · doi:10.1016/j.cpc.2008.06.011
[29] Silling, S. A.; Bobaru, F.: Peridynamic modeling of membranes and fibers, Int. J. Nonlinear mech. 40, 395-409 (2005) · Zbl 1349.74231
[30] Bobaru, F.: Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach, Model. simul. Mater. sci. Eng. 15, 397-417 (2007)
[31] W. Xie, Peridynamic Flux-Corrected Transport Algorithm for Shock Wave Studies. Master’s Thesis, University of Nebraska-Lincoln, Department of Engineering Mechanics, Lincoln, Nebraska, 2005.
[32] Xu, J.; Askari, E.; Weckner, O.; Silling, S. A.: Peridynamic analysis of impact damage in composite laminates, J. aerospace eng. 21, No. 3, 187-194 (2008)
[33] Askari, E.; Bobaru, F.; Lehoucq, R. B.; Parks, M. L.; Silling, S. A.; Weckner, O.: Peridynamics for multiscale materials modeling, J. phys. Conf. ser. 125, 012078 (2008)
[34] Dayal, K.; Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J. mech. Phys. solids 54, No. 4, 1811-1842 (2006) · Zbl 1120.74690 · doi:10.1016/j.jmps.2006.04.001
[35] Warren, T. L.; Silling, S. A.; Askari, E.; Weckner, O.; Epton, M. A.; Xu, J.: A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids struct. 46, No. 5, 1186-1195 (2009) · Zbl 1236.74012
[36] J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity Using Peridynamics, Sandia Report SAND2008-7835, Sandia National Laboratories, Albuquerque, New Mexico, USA, 2008.
[37] Carslaw, H. S.; Jaeger, J. C.: Conduction of heat in solids, (1959) · Zbl 0029.37801
[38] Silling, S. A.; Lehoucq, R. B.: Convergence of peridynamics to classical elasticity theory, J. elasticity 93, 13-37 (2008) · Zbl 1159.74316 · doi:10.1007/s10659-008-9163-3
[39] Bobaru, F.; Yang, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J.: Convergence, adaptive refinement, and scaling in 1d peridynamics, Int. J. Numer. meth. Eng. 77, No. 6, 852-877 (2009) · Zbl 1156.74399 · doi:10.1002/nme.2439
[40] Lehoucq, R. B.; Silling, S. A.: Force flux and the peridynamic stress tensor, J. mech. Phys. solids 56, No. 4, 1566-1577 (2008) · Zbl 1171.74319 · doi:10.1016/j.jmps.2007.08.004
[41] Greenberg, M. D.: Advanced engineering mathematics, (2005) · Zbl 0673.00004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.