×

Finite element convergence for state-based peridynamic fracture models. (English) Zbl 1463.74103

Summary: We establish the a priori convergence rate for finite element approximations of a class of nonlocal nonlinear fracture models. We consider state-based peridynamic models where the force at a material point is due to both the strain between two points and the change in volume inside the domain of the nonlocal interaction. The pairwise interactions between points are mediated by a bond potential of multi-well type while multi-point interactions are associated with the volume change mediated by a hydrostatic strain potential. The hydrostatic potential can either be a quadratic function, delivering a linear force-strain relation, or a multi-well type that can be associated with the material degradation and cavitation. We first show the well-posedness of the peridynamic formulation and that peridynamic evolutions exist in the Sobolev space \(H^2\). We show that the finite element approximations converge to the \(H^2\) solutions uniformly as measured in the mean square norm. For linear continuous finite elements, the convergence rate is shown to be \(C_t \Delta t + C_s h^2/\epsilon^2\), where \(\epsilon\) is the size of the horizon, \(h\) is the mesh size, and \(\Delta t\) is the size of the time step. The constants \(C_t\) and \(C_s\) are independent of \(\Delta t\) and \(h\) and may depend on \(\epsilon\) through the norm of the exact solution. We demonstrate the stability of the semi-discrete approximation. The stability of the fully discrete approximation is shown for the linearized peridynamic force. We present numerical simulations with the dynamic crack propagation that support the theoretical convergence rate.

MSC:

74R99 Fracture and damage
74H55 Stability of dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Agwai, A.; Guven, I.; Madenci, E., Predicting crack propagation with peridynamics: a comparative study, Int J Fract, 171, 1, 65-78 (2011) · Zbl 1283.74052 · doi:10.1007/s10704-011-9628-4
[2] Aksoylu, B.; Unlu, Z., Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM J. Numer. Anal., 52, 653-677 (2014) · Zbl 1297.65201 · doi:10.1137/13092407X
[3] Bobaru, F.; Hu, W., The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, Int. J. Fract., 176, 2, 215-222 (2012) · doi:10.1007/s10704-012-9725-z
[4] Bobaru, F.; Foster, Jt; Geubelle, Ph; Geubelle, Ph; Silling, Sa, Handbook of Peridynamic Modeling (2016), Boca Raton: CRC, Boca Raton · Zbl 1351.74001
[5] Brenner, S.; Scott, R., The Mathematical Theory of Finite Element Methods (2007), Berlin: Springer, Berlin
[6] Brezis, H., Analyse Fonctionnelle, Théorie et Application (1983), Paris: Dunod, Paris · Zbl 0511.46001
[7] Chen, X.; Gunzburger, M., Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Eng., 200, 9, 1237-1250 (2011) · Zbl 1225.74082 · doi:10.1016/j.cma.2010.10.014
[8] Demengel, F., Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext (2012), London: Springer, London · Zbl 1239.46001
[9] Du, Q.: An invitation to nonlocal modeling, analysis and computation. In: Proc. Int. Cong. of Math 2018, Rio de Janeiro, vol. 3, pp. 3523-3552 (2018a)
[10] Du, Q., Nonlocal Modeling, Analysis and Computation. NSF-CBMS Monograph (2018), Philadelphia: SIAM, Philadelphia
[11] Du, Q.; Gunzburger, M.; Lehoucq, R.; Zhou, K., Analysis of the volume-constrained peridynamic navier equation of linear elasticity, J. Elast., 113, 2, 193-217 (2013) · Zbl 1277.35007 · doi:10.1007/s10659-012-9418-x
[12] Du, Q.; Ju, L.; Tian, L.; Zhou, K., A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models, Math. Comput., 82, 284, 1889-1922 (2013) · Zbl 1327.65101 · doi:10.1090/S0025-5718-2013-02708-1
[13] Du, Q.; Tian, L.; Zhao, X., A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models, SIAM J. Numer. Anal., 51, 2, 1211-1234 (2013) · Zbl 1271.82011 · doi:10.1137/120871638
[14] Emmrich, E.; Lehoucq, Rb; Puhst, D., Peridynamics: a nonlocal continuum theory, Meshfree Methods for Partial Differential Equations VI, 45-65 (2013), Berlin: Springer, Berlin · Zbl 1311.74013
[15] Foster, Jt; Silling, Sa; Chen, W., An energy based failure criterion for use with peridynamic states, Int. J. Multiscale Comput. Eng., 9, 6, 675-688 (2011) · doi:10.1615/IntJMultCompEng.2011002407
[16] Gerstle, W.; Sau, N.; Silling, S., Peridynamic modeling of concrete structures, Nuclear Eng. Des., 237, 12, 1250-1258 (2007) · doi:10.1016/j.nucengdes.2006.10.002
[17] Ghajari, M.; Iannucci, L.; Curtis, P., A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Comput. Methods Appl. Mech. Eng., 276, 431-452 (2014) · Zbl 1423.74882 · doi:10.1016/j.cma.2014.04.002
[18] Guan, Q.; Gunzburger, M., Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation, Numer. Methods Part. Differ. Equ., 31, 2, 500-516 (2015) · Zbl 1309.65106 · doi:10.1002/num.21931
[19] Ha, Yd; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract., 162, 1-2, 229-244 (2010) · Zbl 1425.74416 · doi:10.1007/s10704-010-9442-4
[20] Jha, P. K., Lipton, R.: Finite element approximation of nonlinear nonlocal models (2017). arXiv preprint arXiv:1710.07661 · Zbl 1465.74163
[21] Jha, Pk; Lipton, R., Numerical analysis of nonlocal fracture models in Hölder space, SIAM J. Numer. Anal., 56, 906-941 (2018) · Zbl 1388.74054 · doi:10.1137/17M1112236
[22] Jha, Pk; Lipton, R., Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics, Int. J. Numer. Methods Eng., 114, 13, 1389-1410 (2018) · Zbl 07878369 · doi:10.1002/nme.5791
[23] Jha, P. K., Lipton, R.: Small horizon limit of state based peridynamic models. In preparation (2019) · Zbl 1441.74018
[24] Karaa, S., Stability and convergence of fully discrete finite element schemes for the acoustic wave equation, J. Appl. Math. Comput., 40, 1-2, 659-682 (2012) · Zbl 1295.65090 · doi:10.1007/s12190-012-0558-8
[25] Lipton, R., Dynamic brittle fracture as a small horizon limit of peridynamics, J. Elast., 117, 21-50 (2014) · Zbl 1309.74065 · doi:10.1007/s10659-013-9463-0
[26] Lipton, R., Cohesive dynamics and brittle fracture, J. Elast., 124, 2, 143-191 (2016) · Zbl 1386.74127 · doi:10.1007/s10659-015-9564-z
[27] Lipton, R., Silling, S., Lehoucq, R.: Complex fracture nucleation and evolution with nonlocal elastodynamics (2016). arXiv preprint arXiv:1602.00247
[28] Lipton, R.; Said, E.; Jha, P., Free damage propagation with memory, J. Elast., 133, 2, 129-153 (2018) · Zbl 1403.74080 · doi:10.1007/s10659-018-9672-7
[29] Lipton, R., Said, E., Jha, P.K.: Dynamic brittle fracture from nonlocal double-well potentials: a state-based model. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1-27 (2018b)
[30] Littlewood, D. J.: Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) (2010)
[31] Macek, Rw; Silling, Sa, Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007) · doi:10.1016/j.finel.2007.08.012
[32] Mengesha, T.; Du, Q., On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28, 11, 3999 (2015) · Zbl 1330.45011 · doi:10.1088/0951-7715/28/11/3999
[33] Ren, B.; Wu, C.; Askari, E., A 3d discontinuous galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis, Int. J. Impact Eng., 99, 14-25 (2017) · doi:10.1016/j.ijimpeng.2016.09.003
[34] Silling, Sa, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[35] Silling, Sa; Bobaru, F., Peridynamic modeling of membranes and fibers, Int. J. Non-Linear Mech., 40, 2, 395-409 (2005) · Zbl 1349.74231 · doi:10.1016/j.ijnonlinmec.2004.08.004
[36] Silling, Sa; Lehoucq, Rb, Convergence of peridynamics to classical elasticity theory, J. Elast., 93, 1, 13-37 (2008) · Zbl 1159.74316 · doi:10.1007/s10659-008-9163-3
[37] Silling, Sa; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elast., 88, 2, 151-184 (2007) · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[38] Silling, S.; Weckner, O.; Askari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int. J. Fract., 162, 1-2, 219-227 (2010) · Zbl 1425.74045 · doi:10.1007/s10704-010-9447-z
[39] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 1641-1665 (2014) · Zbl 1303.65098 · doi:10.1137/130942644
[40] Weckner, O.; Abeyaratne, R., The effect of long-range forces on the dynamics of a bar, J. Mech. Phys. Solids, 53, 3, 705-728 (2005) · Zbl 1122.74431 · doi:10.1016/j.jmps.2004.08.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.