×

Pinning of longitudinal phonons in holographic spontaneous helices. (English) Zbl 1387.81298

Summary: We consider the spontaneous breaking of translational symmetry and identify the associated Goldstone mode – a longitudinal phonon – in a holographic model with Bianchi VII helical symmetry. For the first time in holography, we observe the pinning of this mode after introducing a source for explicit breaking compatible with the helical symmetry of our setup. We study the dispersion relation of the resulting pseudo-Goldstone mode, uncovering how its speed and mass gap depend on the amplitude of the source and temperature. In addition, we extract the optical conductivity as a function of frequency, which reveals a metal-insulator transition as a consequence of the pinning.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R40 Symmetry breaking in quantum theory

Software:

Mathematica

References:

[1] S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett.108 (2012) 241601 [arXiv:1201.3917] [INSPIRE]. · doi:10.1103/PhysRevLett.108.241601
[2] A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP03 (2015) 071 [arXiv:1501.05656] [INSPIRE]. · Zbl 1388.83559
[3] M. Nitta, S. Sasaki and R. Yokokura, Spatially modulated vacua in relativistic field theories, arXiv:1706.02938 [INSPIRE]. · Zbl 1388.83061
[4] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys.3 (2017) 025 [arXiv:1612.04381] [INSPIRE]. · doi:10.21468/SciPostPhys.3.3.025
[5] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev.B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE]. · Zbl 1388.81933
[6] G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys.60 (1988) 1129 [INSPIRE]. · doi:10.1103/RevModPhys.60.1129
[7] J. Zaanen, Y.-W. Sun, Y. Liu and K. Schalm, Holographic duality in condensed matter physics, Cambridge Univ. Press, Cambridge U.K., (2015). · Zbl 1388.83186
[8] S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE]. · Zbl 1388.83185
[9] H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE]. · Zbl 1388.83315
[10] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev.D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE]. · Zbl 1388.83230
[11] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE]. · Zbl 1388.83559
[12] A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP12 (2011) 091 [arXiv:1109.3866] [INSPIRE]. · Zbl 1306.81094 · doi:10.1007/JHEP12(2011)091
[13] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[14] A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string- and M-theory, Class. Quant. Grav.29 (2012) 194006 [arXiv:1112.4195] [INSPIRE]. · Zbl 1254.83045 · doi:10.1088/0264-9381/29/19/194006
[15] A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP01 (2012) 061 [arXiv:1109.0471] [INSPIRE]. · Zbl 1306.81218 · doi:10.1007/JHEP01(2012)061
[16] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic stripes, Phys. Rev. Lett.110 (2013)201603 [arXiv:1211.5600] [INSPIRE]. · Zbl 1388.83186
[17] A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav.31 (2014)055007 [arXiv:1310.5741] [INSPIRE]. · Zbl 1292.83016
[18] B. Withers, The moduli space of striped black branes, arXiv:1304.2011 [INSPIRE]. · Zbl 1273.83114
[19] B. Withers, Black branes dual to striped phases, Class. Quant. Grav.30 (2013) 155025 [arXiv:1304.0129] [INSPIRE]. · Zbl 1273.83114 · doi:10.1088/0264-9381/30/15/155025
[20] N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE]. · Zbl 1388.83042
[21] B. Withers, Holographic checkerboards, JHEP09 (2014) 102 [arXiv:1407.1085] [INSPIRE]. · Zbl 1333.83115
[22] A. Krikun, Phases of holographic d-wave superconductor, JHEP10 (2015) 123 [arXiv:1506.05379] [INSPIRE]. · doi:10.1007/JHEP10(2015)123
[23] J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP11 (2013) 027 [arXiv:1307.4609] [INSPIRE]. · doi:10.1007/JHEP11(2013)027
[24] S. Cremonini, L. Li and J. Ren, Holographic pair and charge density waves, Phys. Rev.D 95 (2017) 041901 [arXiv:1612.04385] [INSPIRE]. · Zbl 1381.81111
[25] Y. Ling, C. Niu, J. Wu, Z. Xian and H.-B. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett.113 (2014) 091602 [arXiv:1404.0777] [INSPIRE]. · Zbl 1378.81102
[26] R.-G. Cai, L. Li, Y.-Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett.119 (2017) 181601 [arXiv:1706.01470] [INSPIRE]. · doi:10.1103/PhysRevLett.119.181601
[27] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE].
[28] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[29] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE]. · Zbl 1388.83563
[30] A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE]. · doi:10.1007/JHEP09(2014)038
[31] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[32] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP04 (2014) 181 [arXiv:1401.5436] [INSPIRE]. · doi:10.1007/JHEP04(2014)181
[33] M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J.C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE]. · Zbl 1397.83154
[34] G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP07 (2012) 168 [arXiv:1204.0519] [INSPIRE]. · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[35] G.T. Horowitz and J.E. Santos, General relativity and the cuprates, JHEP06 (2013) 087 [arXiv:1302.6586] [INSPIRE]. · Zbl 1342.83084 · doi:10.1007/JHEP06(2013)087
[36] A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP01 (2015) 035 [arXiv:1409.6875] [INSPIRE]. · doi:10.1007/JHEP01(2015)035
[37] M. Rangamani, M. Rozali and D. Smyth, Spatial modulation and conductivities in effective holographic theories, JHEP07 (2015) 024 [arXiv:1505.05171] [INSPIRE]. · Zbl 1388.83315 · doi:10.1007/JHEP07(2015)024
[38] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-wave superconductivity in anisotropic holographic insulators, JHEP05 (2015) 094 [arXiv:1501.07615] [INSPIRE]. · Zbl 1388.83230 · doi:10.1007/JHEP05(2015)094
[39] T. Andrade and S.A. Gentle, Relaxed superconductors, JHEP06 (2015) 140 [arXiv:1412.6521] [INSPIRE]. · Zbl 1388.83162
[40] K.-Y. Kim, K.K. Kim and M. Park, A simple holographic superconductor with momentum relaxation, JHEP04 (2015) 152 [arXiv:1501.00446] [INSPIRE]. · Zbl 1388.81848 · doi:10.1007/JHEP04(2015)152
[41] Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic superconductor on Q-lattice, JHEP02 (2015) 059 [arXiv:1410.6761] [INSPIRE]. · doi:10.1007/JHEP02(2015)059
[42] M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP07 (2015) 035 [arXiv:1504.05561] [INSPIRE]. · Zbl 1388.83563 · doi:10.1007/JHEP07(2015)035
[43] M. Baggioli and M. Goykhman, Under the dome: doped holographic superconductors with broken translational symmetry, JHEP01 (2016) 011 [arXiv:1510.06363] [INSPIRE]. · doi:10.1007/JHEP01(2016)011
[44] T. Andrade and A. Krikun, Commensurability effects in holographic homogeneous lattices, JHEP05 (2016) 039 [arXiv:1512.02465] [INSPIRE]. · Zbl 1388.83061 · doi:10.1007/JHEP05(2016)039
[45] T. Andrade and A. Krikun, Commensurate lock-in in holographic non-homogeneous lattices, JHEP03 (2017) 168 [arXiv:1701.04625] [INSPIRE]. · Zbl 1377.81126 · doi:10.1007/JHEP03(2017)168
[46] N. Jokela, M. Jarvinen and M. Lippert, Holographic sliding stripes, Phys. Rev.D 95 (2017) 086006 [arXiv:1612.07323] [INSPIRE]. · Zbl 1306.81161
[47] S. Cremonini, L. Li and J. Ren, Intertwined orders in holography: pair and charge density waves, JHEP08 (2017) 081 [arXiv:1705.05390] [INSPIRE]. · Zbl 1381.81111 · doi:10.1007/JHEP08(2017)081
[48] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[49] M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett.112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
[50] M. Ammon, J. Leiber and R.P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP03 (2016) 164 [arXiv:1601.02125] [INSPIRE]. · Zbl 1388.83159
[51] A. Nicolis, R. Penco and R.A. Rosen, Relativistic fluids, superfluids, solids and supersolids from a coset construction, Phys. Rev.D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
[52] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/042
[53] M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE]. · doi:10.1103/PhysRevLett.114.251602
[54] M. Baggioli and D.K. Brattan, Drag phenomena from holographic massive gravity, Class. Quant. Grav.34 (2017) 015008 [arXiv:1504.07635] [INSPIRE]. · Zbl 1354.83012
[55] L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE]. · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[56] R. Argurio, G. Giribet, A. Marzolla, D. Naegels and J.A. Sierra-Garcia, Holographic Ward identities for symmetry breaking in two dimensions, JHEP04 (2017) 007 [arXiv:1612.00771] [INSPIRE]. · Zbl 1378.81102 · doi:10.1007/JHEP04(2017)007
[57] A. Amoretti, D. Areán, R. Argurio, D. Musso and L.A. Pando Zayas, A holographic perspective on phonons and pseudo-phonons, JHEP05 (2017) 051 [arXiv:1611.09344] [INSPIRE]. · Zbl 1380.81283 · doi:10.1007/JHEP05(2017)051
[58] S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett.115 (2015) 221601 [arXiv:1507.00003] [INSPIRE]. · doi:10.1103/PhysRevLett.115.221601
[59] L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP07 (2016) 074 [arXiv:1601.03384] [INSPIRE]. · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
[60] N. Jokela, M. Jarvinen and M. Lippert, Pinning of holographic sliding stripes, Phys. Rev.D 96 (2017) 106017 [arXiv:1708.07837] [INSPIRE]. · Zbl 1273.83114
[61] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, arXiv:1708.08477 [INSPIRE]. · Zbl 1384.83021
[62] M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav.27 (2010) 035002 [arXiv:0905.1822] [INSPIRE]. · Zbl 1186.83083
[63] A. Adam, S. Kitchen and T. Wiseman, A numerical approach to finding general stationary vacuum black holes, Class. Quant. Grav.29 (2012) 165002 [arXiv:1105.6347] [INSPIRE]. · Zbl 1252.83049 · doi:10.1088/0264-9381/29/16/165002
[64] T. Wiseman, Numerical construction of static and stationary black holes, arXiv:1107.5513 [INSPIRE]. · Zbl 1266.83005
[65] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[66] A. Bagrov, N. Kaplis, A. Krikun, K. Schalm and J. Zaanen, Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study, JHEP11 (2016) 057 [arXiv:1608.03738] [INSPIRE]. · Zbl 1390.81247 · doi:10.1007/JHEP11(2016)057
[67] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[68] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[69] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys.17 (2015) 113007 [arXiv:1506.02662] [INSPIRE]. · doi:10.1088/1367-2630/17/11/113007
[70] A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett.108 (2012) 211601 [arXiv:1203.0533] [INSPIRE]. · Zbl 1306.81094
[71] A. Donos, J.P. Gauntlett, T. Griffin, N. Lohitsiri and L. Melgar, Holographic DC conductivity and Onsager relations, JHEP07 (2017) 006 [arXiv:1704.05141] [INSPIRE]. · Zbl 1380.81309 · doi:10.1007/JHEP07(2017)006
[72] R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE]. · Zbl 1388.81933 · doi:10.1007/JHEP10(2015)112
[73] P.C. Martin, O. Parodi and P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev.A 6 (1972) 2401.
[74] A. Zippelius, B.I. Halperin and D.R. Nelson, Dynamics of two-dimensional melting, Phys. Rev.B 22 (1980) 2514. · Zbl 1390.83150
[75] L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino terms for relativistic fluids, superfluids, solids and supersolids, Phys. Rev. Lett.114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].
[76] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE]. · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[77] L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys.24 (1963) 419. · Zbl 0131.45002 · doi:10.1016/0003-4916(63)90078-2
[78] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007)144502 [arXiv:0706.3215] [INSPIRE].
[79] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE]. · Zbl 1348.83039
[80] J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP05 (2017) 001 [arXiv:1703.08757] [INSPIRE]. · Zbl 1380.83108
[81] S. Grozdanov and N. Poovuttikul, Generalised global symmetries and magnetohydrodynamic waves in a strongly interacting holographic plasma, arXiv:1707.04182 [INSPIRE]. · Zbl 1390.83112
[82] M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP09 (2015) 010 [arXiv:1505.06992] [INSPIRE]. · Zbl 1388.83185 · doi:10.1007/JHEP09(2015)010
[83] M. Blake, Magnetotransport from the fluid/gravity correspondence, JHEP10 (2015) 078 [arXiv:1507.04870] [INSPIRE]. · Zbl 1388.83186 · doi:10.1007/JHEP10(2015)078
[84] P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev.D 94 (2016) 106001 [arXiv:1601.04624] [INSPIRE]. · Zbl 1388.83042
[85] A. Lucas, J. Crossno, K.C. Fong, P. Kim and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, Phys. Rev.B 93 (2016) 075426 [arXiv:1510.01738] [INSPIRE].
[86] E. Banks, A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, Holographic thermal DC response in the hydrodynamic limit, Class. Quant. Grav.34 (2017) 045001 [arXiv:1609.08912] [INSPIRE]. · Zbl 1358.83036
[87] V. Scopelliti, K. Schalm and A. Lucas, Hydrodynamic charge and heat transport on inhomogeneous curved spaces, Phys. Rev.B 96 (2017) 075150 [arXiv:1705.04325] [INSPIRE].
[88] S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.11 (2015) 54 [arXiv:1405.3651] [INSPIRE]. · doi:10.1038/nphys3174
[89] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE]. · doi:10.1007/JHEP01(2015)039
[90] Wolfram Research Inc., Mathematica, version 10.2, Champaign IL U.S.A., (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.