×

Solid holography and massive gravity. (English) Zbl 1388.83559

Summary: Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[2] M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev.D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
[3] M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett.112 (2014) 071602 [arXiv:1310.3832] [INSPIRE]. · doi:10.1103/PhysRevLett.112.071602
[4] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev.D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
[5] V.A. Rubakov, Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [INSPIRE].
[6] S.L. Dubovsky, Phases of massive gravity, JHEP10 (2004) 076 [hep-th/0409124] [INSPIRE]. · doi:10.1088/1126-6708/2004/10/076
[7] D. Blas and S. Sibiryakov, Completing Lorentz violating massive gravity at high energies, Zh. Eksp. Teor. Fiz.147 (2015) 578 [arXiv:1410.2408] [INSPIRE].
[8] C. de Rham, Massive Gravity, Living Rev. Rel.17 (2014) 7 [arXiv:1401.4173] [INSPIRE]. · Zbl 1320.83018
[9] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[10] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE]. · doi:10.1103/PhysRevLett.106.231101
[11] M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE]. · doi:10.1103/PhysRevLett.114.251602
[12] L. Alberte and A. Khmelnitsky, Stability of Massive Gravity Solutions for Holographic Conductivity, Phys. Rev.D 91 (2015) 046006 [arXiv:1411.3027] [INSPIRE].
[13] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE]. · doi:10.1007/JHEP05(2014)101
[14] M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J.C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE]. · doi:10.1140/epjc/s10052-014-3176-9
[15] H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].
[16] H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta70 (1997) 275 [hep-ph/9609466] [INSPIRE]. · Zbl 0867.73018
[17] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE]. · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[18] A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev.D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
[19] S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
[20] D.T. Son, Effective Lagrangian and topological interactions in supersolids, Phys. Rev. Lett.94 (2005) 175301 [cond-mat/0501658] [INSPIRE]. · doi:10.1103/PhysRevLett.94.175301
[21] S. Endlich, A. Nicolis and J. Wang, Solid Inflation, JCAP10 (2013) 011 [arXiv:1210.0569] [INSPIRE]. · doi:10.1088/1475-7516/2013/10/011
[22] C. Lin and L.Z. Labun, Effective Field Theory of Broken Spatial Diffeomorphisms, arXiv:1501.07160 [INSPIRE]. · Zbl 1388.83024
[23] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[24] S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev.D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].
[25] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
[26] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP04 (2010) 120 [arXiv:0912.1061] [INSPIRE]. · Zbl 1272.83098 · doi:10.1007/JHEP04(2010)120
[27] R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev.B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE]. · doi:10.1103/PhysRevB.89.245116
[28] S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.11 (2015) 54 [arXiv:1405.3651] [INSPIRE]. · doi:10.1038/nphys3174
[29] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[30] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP11 (2014) 081 [arXiv:1406.4742] [INSPIRE]. · doi:10.1007/JHEP11(2014)081
[31] A. Amoretti, A. Braggio, N. Magnoli and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, JHEP07 (2015) 102 [arXiv:1411.6631] [INSPIRE]. · Zbl 1388.83160 · doi:10.1007/JHEP07(2015)102
[32] S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett.115 (2015) 221601 [arXiv:1507.00003] [INSPIRE]. · doi:10.1103/PhysRevLett.115.221601
[33] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE]. · doi:10.1007/JHEP01(2015)039
[34] S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett.112 (2014) 231601 [arXiv:1402.0872] [INSPIRE]. · doi:10.1103/PhysRevLett.112.231601
[35] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP04 (2014) 181 [arXiv:1401.5436] [INSPIRE]. · doi:10.1007/JHEP04(2014)181
[36] S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Thermal conductivity at a disordered quantum critical point, arXiv:1508.04435 [INSPIRE]. · Zbl 1388.83256
[37] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys.17 (2015) 113007 [arXiv:1506.02662] [INSPIRE]. · doi:10.1088/1367-2630/17/11/113007
[38] A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys.B 892 (2015) 239 [arXiv:1411.3331] [INSPIRE]. · Zbl 1328.82054 · doi:10.1016/j.nuclphysb.2015.01.017
[39] A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev.D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].
[40] D. Arean, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, The Holographic Disorder-Driven Supeconductor-Metal Transition, arXiv:1507.02280 [INSPIRE].
[41] D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic superconductor with disorder, Phys. Rev.D 89 (2014) 106003 [arXiv:1308.1920] [INSPIRE].
[42] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP09 (2015) 094 [arXiv:1502.02631] [INSPIRE]. · Zbl 1388.83161 · doi:10.1007/JHEP09(2015)094
[43] M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP08 (2015) 124 [arXiv:1502.03789] [INSPIRE]. · Zbl 1388.83187 · doi:10.1007/JHEP08(2015)124
[44] M. Baggioli and M. Goykhman, Under The Dome: Doped holographic superconductors with broken translational symmetry, JHEP01 (2016) 011 [arXiv:1510.06363] [INSPIRE]. · doi:10.1007/JHEP01(2016)011
[45] M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP15 (2015) 35 [arXiv:1504.05561] [INSPIRE]. · Zbl 1388.83563 · doi:10.1007/JHEP07(2015)035
[46] M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity, arXiv:1504.07635 [INSPIRE]. · Zbl 1354.83012
[47] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[48] E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP02 (2008) 101 [arXiv:0708.0561] [INSPIRE].
[49] E. Megias and O. Pujolàs, Naturally light dilatons from nearly marginal deformations, JHEP08 (2014) 081 [arXiv:1401.4998] [INSPIRE]. · doi:10.1007/JHEP08(2014)081
[50] R. Argurio, D. Musso and D. Redigolo, Anatomy of new SUSY breaking holographic RG flows, JHEP03 (2015) 086 [arXiv:1411.2658] [INSPIRE]. · Zbl 1388.83725 · doi:10.1007/JHEP03(2015)086
[51] J.T. Devreese, Fröhlich polaron concept. Lecture course including detailed theoretical derivations, arXiv:1012.4576.
[52] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, vol. 7, Pergamon Press (1970), pg. 1-12.
[53] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995).
[54] L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, arXiv:1601.03384 [INSPIRE]. · Zbl 1390.83150
[55] G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE]. · doi:10.1103/PhysRevLett.87.081601
[56] S. Endlich, A. Nicolis, R. Rattazzi and J. Wang, The quantum mechanics of perfect fluids, JHEP04 (2011) 102 [arXiv:1011.6396] [INSPIRE]. · Zbl 1250.81116 · doi:10.1007/JHEP04(2011)102
[57] D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev.D 6 (1972) 3368 [INSPIRE].
[58] L. Alberte and A. Khmelnitsky, Reduced massive gravity with two Stückelberg fields, Phys. Rev.D 88 (2013) 064053 [arXiv:1303.4958] [INSPIRE].
[59] C. Armendariz-Picon and E.A. Lim, Haloes of k-essence, JCAP08 (2005) 007 [astro-ph/0505207] [INSPIRE].
[60] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
[61] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond.A 173 (1939) 211 [INSPIRE]. · Zbl 0023.43004 · doi:10.1098/rspa.1939.0140
[62] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, Butterworth-Heinemann (1994), pg. 141-143.
[63] R. Wald, General Relativity, The University of Chichago Press (1984). · Zbl 0549.53001
[64] N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys.305 (2003) 96 [hep-th/0210184] [INSPIRE]. · Zbl 1022.81035 · doi:10.1016/S0003-4916(03)00068-X
[65] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/014
[66] L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.