×

Black hole elasticity and gapped transverse phonons in holography. (English) Zbl 1384.83021

Summary: We study the elastic response of planar black hole (BH) solutions in a simple class of holographic models with broken translational invariance. We compute the transverse quasi-normal mode spectrum and the propagation speed of the lowest energy mode. We find that the speed of the lowest mode relates to the BH rigidity modulus as dictated by elasticity theory. This allows to identify these modes as transverse phonons – the pseudo Goldstone bosons of spontaneously broken translational invariance. In addition, we show that these modes have a mass gap controlled by an explicit source of the translational symmetry breaking. These results provide a new confirmation that the BHs in these models do exhibit solid properties that become more manifest at low temperatures. Also, by the AdS/CFT correspondence, this allows to extend the standard results from the effective field theory for solids to quantum-critical materials.

MSC:

83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].
[2] H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta70 (1997) 275 [hep-ph/9609466] [INSPIRE]. · Zbl 0867.73018
[3] P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics, Cambridge University Press, Cambridge U.K., (1995).
[4] G. Gruner, The dynamics of spin-density waves, Rev. Mod. Phys.66 (1994) 1 [INSPIRE]. · doi:10.1103/RevModPhys.66.1
[5] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[6] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[7] M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev.D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
[8] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].
[9] M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE]. · doi:10.1103/PhysRevLett.114.251602
[10] L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE]. · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[11] L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP07 (2016) 074 [arXiv:1601.03384] [INSPIRE]. · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
[12] L.D. Landau and E.M. Lifshitz, Course of theoretical physics, volume 7, theory of elasticity, Pergamon Press, Oxford U.K., (1970).
[13] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev.B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
[14] S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
[15] S. Endlich, A. Nicolis and J. Wang, Solid inflation, JCAP10 (2013) 011 [arXiv:1210.0569] [INSPIRE]. · doi:10.1088/1475-7516/2013/10/011
[16] A. Nicolis, R. Penco and R.A. Rosen, Relativistic fluids, superfluids, solids and supersolids from a coset construction, Phys. Rev.D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
[17] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE]. · doi:10.1007/JHEP01(2015)039
[18] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in aholographic model, JHEP12 (2014) 170 [arXiv:1409.8346] [INSPIRE]. · doi:10.1007/JHEP12(2014)170
[19] M. Baggioli and W.-J. Li, Diffusivities bounds and chaos in holographic Horndeski theories, JHEP07 (2017) 055 [arXiv:1705.01766] [INSPIRE]. · Zbl 1380.83186 · doi:10.1007/JHEP07(2017)055
[20] S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.11 (2015) 54 [arXiv:1405.3651] [INSPIRE]. · doi:10.1038/nphys3174
[21] S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett.115 (2015) 221601 [arXiv:1507.00003] [INSPIRE]. · doi:10.1103/PhysRevLett.115.221601
[22] R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE]. · Zbl 1388.81933 · doi:10.1007/JHEP10(2015)112
[23] S. Grozdanov, A. Lucas and K. Schalm, Incoherent thermal transport from dirty black holes, Phys. Rev.D 93 (2016) 061901 [arXiv:1511.05970] [INSPIRE].
[24] M. Blake, Universal diffusion in incoherent black holes, Phys. Rev.D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
[25] M. Baggioli, B. Goutéraux, E. Kiritsis and W.-J. Li, Higher derivative corrections to incoherent metallic transport in holography, JHEP03 (2017) 170 [arXiv:1612.05500] [INSPIRE]. · Zbl 1377.81151 · doi:10.1007/JHEP03(2017)170
[26] K.-Y. Kim and C. Niu, Diffusion and butterfly velocity at finite density, JHEP06 (2017) 030 [arXiv:1704.00947] [INSPIRE]. · Zbl 1380.81353
[27] M. Blake, R.A. Davison and S. Sachdev, Thermal diffusivity and chaos in metals without quasiparticles, Phys. Rev.D 96 (2017) 106008 [arXiv:1705.07896] [INSPIRE].
[28] A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP03 (2015) 071 [arXiv:1501.05656] [INSPIRE].
[29] R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP09 (2015) 090 [arXiv:1505.05092] [INSPIRE]. · Zbl 1388.83220 · doi:10.1007/JHEP09(2015)090
[30] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys.17 (2015) 113007 [arXiv:1506.02662] [INSPIRE]. · doi:10.1088/1367-2630/17/11/113007
[31] M. Baggioli and O. Pujolàs, On holographic disorder-driven metal-insulator transitions, JHEP01 (2017) 040 [arXiv:1601.07897] [INSPIRE]. · Zbl 1373.81311 · doi:10.1007/JHEP01(2017)040
[32] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev.D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
[33] M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett.112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
[34] R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev.B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].
[35] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[36] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP04 (2014) 181 [arXiv:1401.5436] [INSPIRE]. · doi:10.1007/JHEP04(2014)181
[37] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[38] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP09 (2014) 160 [arXiv:1406.4134] [INSPIRE]. · doi:10.1007/JHEP09(2014)160
[39] A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE]. · doi:10.1007/JHEP09(2014)038
[40] G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP07 (2012) 168 [arXiv:1204.0519] [INSPIRE]. · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[41] M. Baggioli, Gravity, holography and applications to condensed matter, arXiv:1610.02681 [INSPIRE].
[42] M. Baggioli and O. Pujolàs, On effective holographic Mott insulators, JHEP12 (2016) 107 [arXiv:1604.08915] [INSPIRE]. · doi:10.1007/JHEP12(2016)107
[43] A. Amoretti, M. Baggioli, N. Magnoli and D. Musso, Chasing the cuprates with dilatonic dyons, JHEP06 (2016) 113 [arXiv:1603.03029] [INSPIRE]. · Zbl 1388.83334 · doi:10.1007/JHEP06(2016)113
[44] I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I.S. Landea, Holographic type II Goldstone bosons, JHEP07 (2013) 108 [arXiv:1302.5641] [INSPIRE]. · doi:10.1007/JHEP07(2013)108
[45] R. Argurio, A. Marzolla, A. Mezzalira and D. Naegels, Note on holographic nonrelativistic Goldstone bosons, Phys. Rev.D 92 (2015) 066009 [arXiv:1507.00211] [INSPIRE].
[46] A. Esposito, S. Garcia-Saenz and R. Penco, First sound in holographic superfluids at zero temperature, JHEP12 (2016) 136 [arXiv:1606.03104] [INSPIRE]. · Zbl 1390.83157 · doi:10.1007/JHEP12(2016)136
[47] R. Argurio, A. Marzolla, A. Mezzalira and D. Musso, Analytic pseudo-Goldstone bosons, JHEP03 (2016) 012 [arXiv:1512.03750] [INSPIRE]. · Zbl 1388.83164 · doi:10.1007/JHEP03(2016)012
[48] R. Argurio, G. Giribet, A. Marzolla, D. Naegels and J.A. Sierra-Garcia, Holographic Ward identities for symmetry breaking in two dimensions, JHEP04 (2017) 007 [arXiv:1612.00771] [INSPIRE]. · Zbl 1378.81102 · doi:10.1007/JHEP04(2017)007
[49] A. Amoretti, D. Areán, R. Argurio, D. Musso and L.A. Pando Zayas, A holographic perspective on phonons and pseudo-phonons, JHEP05 (2017) 051 [arXiv:1611.09344] [INSPIRE]. · Zbl 1380.81283 · doi:10.1007/JHEP05(2017)051
[50] S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[51] H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
[52] A. Aperis, P. Kotetes, E. Papantonopoulos, G. Siopsis, P. Skamagoulis and G. Varelogiannis, Holographic charge density waves, Phys. Lett.B 702 (2011) 181 [arXiv:1009.6179] [INSPIRE].
[53] H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett.106 (2011) 061601 [arXiv:1011.4144] [INSPIRE]. · doi:10.1103/PhysRevLett.106.061601
[54] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[55] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP10 (2011) 034 [arXiv:1106.3883] [INSPIRE]. · Zbl 1303.81145 · doi:10.1007/JHEP10(2011)034
[56] A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP01 (2012) 061 [arXiv:1109.0471] [INSPIRE]. · Zbl 1306.81218 · doi:10.1007/JHEP01(2012)061
[57] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev.D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].
[58] M. Ammon, J. Leiber and R.P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP03 (2016) 164 [arXiv:1601.02125] [INSPIRE]. · Zbl 1388.83159
[59] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys.3 (2017) 025 [arXiv:1612.04381] [INSPIRE]. · doi:10.21468/SciPostPhys.3.3.025
[60] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE]. · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[61] N. Jokela, M. Jarvinen and M. Lippert, Pinning of holographic sliding stripes, Phys. Rev.D 96 (2017) 106017 [arXiv:1708.07837] [INSPIRE].
[62] T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, arXiv:1708.08306 [INSPIRE]. · Zbl 1387.81298
[63] L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys.24 (1963) 419. · Zbl 0131.45002 · doi:10.1016/0003-4916(63)90078-2
[64] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[65] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[66] S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP03 (2016) 170 [arXiv:1601.02757] [INSPIRE]. · Zbl 1388.83457 · doi:10.1007/JHEP03(2016)170
[67] P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev.D 94 (2016) 106001 [arXiv:1601.04624] [INSPIRE].
[68] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE].
[69] M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP09 (2015) 010 [arXiv:1505.06992] [INSPIRE]. · Zbl 1388.83185 · doi:10.1007/JHEP09(2015)010
[70] A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev.D 90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].
[71] S. Grozdanov, N. Kaplis and A.O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP07 (2016) 151 [arXiv:1605.02173] [INSPIRE]. · Zbl 1390.83113 · doi:10.1007/JHEP07(2016)151
[72] D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, arXiv:1707.08577 [INSPIRE].
[73] M. Stephanov, H.-U. Yee and Y. Yin, Collective modes of chiral kinetic theory in a magnetic field, Phys. Rev.D 91 (2015) 125014 [arXiv:1501.00222] [INSPIRE].
[74] U. Gürsoy, S. Lin and E. Shuryak, Instabilities near the QCD phase transition in the holographic models, Phys. Rev.D 88 (2013) 105021 [arXiv:1309.0789] [INSPIRE].
[75] R.A. Janik, J. Jankowski and H. Soltanpanahi, Quasinormal modes and the phase structure of strongly coupled matter, JHEP06 (2016) 047 [arXiv:1603.05950] [INSPIRE]. · doi:10.1007/JHEP06(2016)047
[76] A. Esposito, S. Garcia-Saenz, A. Nicolis and R. Penco, Conformal solids and holography, JHEP12 (2017) 113 [arXiv:1708.09391] [INSPIRE]. · Zbl 1383.81208 · doi:10.1007/JHEP12(2017)113
[77] S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev.D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE]. · Zbl 1448.81436
[78] D. Anninos, T. Anous, F. Denef and L. Peeters, Holographic vitrification, JHEP04 (2015) 027 [arXiv:1309.0146] [INSPIRE]. · Zbl 1388.83368
[79] M. Baggioli and D.K. Brattan, Drag phenomena from holographic massive gravity, Class. Quant. Grav.34 (2017) 015008 [arXiv:1504.07635] [INSPIRE]. · Zbl 1354.83012 · doi:10.1088/1361-6382/34/1/015008
[80] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba and O. Pujolàs, Holographic phonons, arXiv:1711.03100 [INSPIRE]. · Zbl 1384.83021
[81] M. Ammon, M. Kaminski, R. Koirala, J. Leiber and J. Wu, Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP04 (2017) 067 [arXiv:1701.05565] [INSPIRE]. · Zbl 1378.81100 · doi:10.1007/JHEP04(2017)067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.