×

Commensurability effects in holographic homogeneous lattices. (English) Zbl 1388.83061

Summary: An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.” Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities.However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C47 Methods of quantum field theory in general relativity and gravitational theory

Software:

Mathematica; Matlab

References:

[1] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE]. · doi:10.1038/nphys2701
[2] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[3] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE]. · doi:10.1007/JHEP05(2014)101
[4] A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE]. · doi:10.1007/JHEP09(2014)038
[5] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[6] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP04 (2014) 181 [arXiv:1401.5436] [INSPIRE]. · doi:10.1007/JHEP04(2014)181
[7] M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J.C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE]. · doi:10.1140/epjc/s10052-014-3176-9
[8] G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP07 (2012) 168 [arXiv:1204.0519] [INSPIRE]. · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[9] G.T. Horowitz and J.E. Santos, General Relativity and the Cuprates, JHEP06 (2013) 087 [arXiv:1302.6586] [INSPIRE]. · Zbl 1342.83084 · doi:10.1007/JHEP06(2013)087
[10] A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP01 (2015) 035 [arXiv:1409.6875] [INSPIRE]. · doi:10.1007/JHEP01(2015)035
[11] M. Rangamani, M. Rozali and D. Smyth, Spatial Modulation and Conductivities in Effective Holographic Theories, JHEP07 (2015) 024 [arXiv:1505.05171] [INSPIRE]. · Zbl 1388.83315 · doi:10.1007/JHEP07(2015)024
[12] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-Wave Superconductivity in Anisotropic Holographic Insulators, JHEP05 (2015) 094 [arXiv:1501.07615] [INSPIRE]. · Zbl 1388.83230 · doi:10.1007/JHEP05(2015)094
[13] T. Andrade and S.A. Gentle, Relaxed superconductors, JHEP06 (2015) 140 [arXiv:1412.6521] [INSPIRE]. · Zbl 1388.83162 · doi:10.1007/JHEP06(2015)140
[14] K.-Y. Kim, K.K. Kim and M. Park, A Simple Holographic Superconductor with Momentum Relaxation, JHEP04 (2015) 152 [arXiv:1501.00446] [INSPIRE]. · Zbl 1388.81848 · doi:10.1007/JHEP04(2015)152
[15] Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic Superconductor on Q-lattice, JHEP02 (2015) 059 [arXiv:1410.6761] [INSPIRE]. · doi:10.1007/JHEP02(2015)059
[16] Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator Transition by Holographic Charge Density Waves, Phys. Rev. Lett.113 (2014) 091602 [arXiv:1404.0777] [INSPIRE]. · doi:10.1103/PhysRevLett.113.091602
[17] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[18] Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic Entanglement Entropy Close to Quantum Phase Transitions, arXiv:1502.03661 [INSPIRE]. · Zbl 1398.81165
[19] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev.B 91 (2015) 155126 [arXiv:1501.03165] [INSPIRE]. · doi:10.1103/PhysRevB.91.155126
[20] A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys.B 892 (2015) 239 [arXiv:1411.3331] [INSPIRE]. · Zbl 1328.82054 · doi:10.1016/j.nuclphysb.2015.01.017
[21] O. Braun and Y. Kivshar, The Frenkel-Kontorova model: concepts, methods and applications, Springer-Verlag, Berlin Heidelberg (2004). · Zbl 1140.82001 · doi:10.1007/978-3-662-10331-9
[22] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[23] H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
[24] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev.D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].
[25] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
[26] A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP12 (2011) 091 [arXiv:1109.3866] [INSPIRE]. · Zbl 1306.81094 · doi:10.1007/JHEP12(2011)091
[27] N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE]. · doi:10.1007/JHEP12(2014)083
[28] B. Withers, Holographic Checkerboards, JHEP09 (2014) 102 [arXiv:1407.1085] [INSPIRE]. · Zbl 1333.83115 · doi:10.1007/JHEP09(2014)102
[29] A. Krikun, Phases of holographic d-wave superconductor, JHEP10 (2015) 123 [arXiv:1506.05379] [INSPIRE]. · doi:10.1007/JHEP10(2015)123
[30] A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav.31 (2014) 055007 [arXiv:1310.5741] [INSPIRE]. · Zbl 1292.83016 · doi:10.1088/0264-9381/31/5/055007
[31] J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP11 (2013) 027 [arXiv:1307.4609] [INSPIRE]. · doi:10.1007/JHEP11(2013)027
[32] A. Krikun, Charge density wave instability in holographic d-wave superconductor, JHEP04 (2014) 135 [arXiv:1312.1588] [INSPIRE]. · doi:10.1007/JHEP04(2014)135
[33] V. Ilyina and P. Silaev, Numerical methods for theoretical physicists, Moscow Institute for Computing Research Publ. (2004).
[34] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[35] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys.144 (1982) 249 [INSPIRE]. · Zbl 0606.53044 · doi:10.1016/0003-4916(82)90116-6
[36] P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett.B 115 (1982) 197 [INSPIRE]. · doi:10.1016/0370-2693(82)90643-8
[37] Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP05 (2012) 054 [arXiv:1202.4458] [INSPIRE]. · Zbl 1348.83043 · doi:10.1007/JHEP05(2012)054
[38] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP12 (2014) 170 [arXiv:1409.8346] [INSPIRE]. · doi:10.1007/JHEP12(2014)170
[39] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE]. · doi:10.1007/JHEP01(2015)039
[40] R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP09 (2015) 090 [arXiv:1505.05092] [INSPIRE]. · Zbl 1388.83220 · doi:10.1007/JHEP09(2015)090
[41] S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett.108 (2012) 241601 [arXiv:1201.3917] [INSPIRE]. · doi:10.1103/PhysRevLett.108.241601
[42] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes: the art of scientific computing, Cambridge U.K. (1992). · Zbl 0845.65001
[43] L.N. Trefethen, Spectral methods in MATLAB. Vol. 10, Siam (2000). · Zbl 0953.68643
[44] Wolfram Research Inc., Mathematica, Version 10.2, Champaign Illinois U.S.A. (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.