×

A holographic perspective on phonons and pseudo-phonons. (English) Zbl 1380.81283

Summary: We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
81T25 Quantum field theory on lattices

References:

[1] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE]. · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[2] A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev.D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
[3] H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE]. · Zbl 1388.83161
[4] D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE]. · Zbl 1390.83157
[5] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[6] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [INSPIRE]. · doi:10.1088/1126-6708/2001/08/041
[7] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [INSPIRE]. · Zbl 0995.81075 · doi:10.1016/S0550-3213(02)00179-7
[8] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE]. · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[9] I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP11 (2010) 014 [arXiv:1007.4592] [INSPIRE]. · Zbl 1294.81227 · doi:10.1007/JHEP11(2010)014
[10] I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, JHEP08 (2011) 119 [arXiv:1106.4826] [INSPIRE]. · Zbl 1298.81194 · doi:10.1007/JHEP08(2011)119
[11] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[12] H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
[13] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[14] R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev.B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE]. · doi:10.1103/PhysRevB.89.245116
[15] M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev.D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
[16] M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett.112 (2014) 071602 [arXiv:1310.3832] [INSPIRE]. · doi:10.1103/PhysRevLett.112.071602
[17] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE]. · doi:10.1007/JHEP05(2014)101
[18] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[19] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP09 (2014) 160 [arXiv:1406.4134] [INSPIRE]. · doi:10.1007/JHEP09(2014)160
[20] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP11 (2014) 081 [arXiv:1406.4742] [INSPIRE]. · doi:10.1007/JHEP11(2014)081
[21] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev.D 91 (2015) 025002 [arXiv:1407.0306] [INSPIRE].
[22] M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE]. · doi:10.1103/PhysRevLett.114.251602
[23] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP09 (2015) 094 [arXiv:1502.02631] [INSPIRE]. · Zbl 1388.83161 · doi:10.1007/JHEP09(2015)094
[24] L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid Holography and Massive Gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE]. · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[25] C. Hoyos, U. Kol, J. Sonnenschein and S. Yankielowicz, The holographic dilaton, JHEP10 (2013) 181 [arXiv:1307.2572] [INSPIRE]. · Zbl 1342.81343 · doi:10.1007/JHEP10(2013)181
[26] B. Bajc and A.R. Lugo, On the matching method and the Goldstone theorem in holography, JHEP07 (2013) 056 [arXiv:1304.3051] [INSPIRE]. · Zbl 1342.83096 · doi:10.1007/JHEP07(2013)056
[27] R. Argurio, D. Musso and D. Redigolo, Anatomy of new SUSY breaking holographic RG flows, JHEP03 (2015) 086 [arXiv:1411.2658] [INSPIRE]. · Zbl 1388.83725 · doi:10.1007/JHEP03(2015)086
[28] T. Brauner, Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems, Symmetry2 (2010) 609 [arXiv:1001.5212] [INSPIRE]. · doi:10.3390/sym2020609
[29] I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I.S. Landea, Holographic Type II Goldstone bosons, JHEP07 (2013) 108 [arXiv:1302.5641] [INSPIRE]. · doi:10.1007/JHEP07(2013)108
[30] R. Argurio, A. Marzolla, A. Mezzalira and D. Naegels, Note on holographic nonrelativistic Goldstone bosons, Phys. Rev.D 92 (2015) 066009 [arXiv:1507.00211] [INSPIRE].
[31] A. Esposito, S. Garcia-Saenz and R. Penco, First sound in holographic superfluids at zero temperature, JHEP12 (2016) 136 [arXiv:1606.03104] [INSPIRE]. · Zbl 1390.83157 · doi:10.1007/JHEP12(2016)136
[32] H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta70 (1997) 275 [hep-ph/9609466] [INSPIRE]. · Zbl 0867.73018
[33] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.31 (1973) 259 [INSPIRE]. · Zbl 1125.81321 · doi:10.1007/BF01646487
[34] E. Witten, Chiral Symmetry, the 1/n Expansion and the SU(N ) Thirring Model, Nucl. Phys.B 145 (1978) 110 [INSPIRE]. · doi:10.1016/0550-3213(78)90416-9
[35] D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev.D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].
[36] R. Argurio, G. Giribet, A. Marzolla, D. Naegels and J.A. Sierra-Garcia, Holographic Ward identities for symmetry breaking in two dimensions, JHEP04 (2017) 007 [arXiv:1612.00771] [INSPIRE]. · Zbl 1378.81102 · doi:10.1007/JHEP04(2017)007
[37] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[38] A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP12 (2011) 091 [arXiv:1109.3866] [INSPIRE]. · Zbl 1306.81094 · doi:10.1007/JHEP12(2011)091
[39] A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP01 (2012) 061 [arXiv:1109.0471] [INSPIRE]. · Zbl 1306.81218 · doi:10.1007/JHEP01(2012)061
[40] A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett.108 (2012) 211601 [arXiv:1203.0533] [INSPIRE]. · doi:10.1103/PhysRevLett.108.211601
[41] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev.D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].
[42] A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP03 (2013) 108 [arXiv:1212.0871] [INSPIRE]. · Zbl 1342.83068 · doi:10.1007/JHEP03(2013)108
[43] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
[44] J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP11 (2013) 027 [arXiv:1307.4609] [INSPIRE]. · doi:10.1007/JHEP11(2013)027
[45] A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE]. · doi:10.1007/JHEP09(2014)038
[46] A. Donos, J.P. Gauntlett and C. Pantelidou, Conformal field theories in d = 4 with a helical twist, Phys. Rev.D 91 (2015) 066003 [arXiv:1412.3446] [INSPIRE].
[47] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-Wave Superconductivity in Anisotropic Holographic Insulators, JHEP05 (2015) 094 [arXiv:1501.07615] [INSPIRE]. · Zbl 1388.83230 · doi:10.1007/JHEP05(2015)094
[48] Y. Seo, G. Song, P. Kim, S. Sachdev and S.-J. Sin, Holography of the Dirac Fluid in Graphene with two currents, Phys. Rev. Lett.118 (2017) 036601 [arXiv:1609.03582] [INSPIRE]. · doi:10.1103/PhysRevLett.118.036601
[49] A. Cherman, T.D. Cohen and A. Nellore, A bound on the speed of sound from holography, Phys. Rev.D 80 (2009) 066003 [arXiv:0905.0903] [INSPIRE].
[50] C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev.D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.