×

Holographic DC conductivity and Onsager relations. (English) Zbl 1380.81309

Summary: Within holography the DC conductivity can be obtained by solving a system of Stokes equations for an auxiliary fluid living on the black hole horizon. We show that these equations can be derived from a novel variational principle involving a functional that depends on the fluid variables of interest as well as the time reversed quantities. This leads to simple derivation of the Onsager relations for the conductivity. We also obtain the relevant Stokes equations for bulk theories of gravity in four dimensions including a \( \vartheta F \wedge F \) term in the Lagrangian, where \(\vartheta \) is a function of dynamical scalar fields. We discuss various realisations of the anomalous Hall conductivity that this term induces and also solve the Stokes equations for holographic lattices which break translations in one spatial dimension.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP07 (2012) 168 [arXiv:1204.0519] [INSPIRE]. · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[2] A. Donos and J.P. Gauntlett, Navier-Stokes Equations on Black Hole Horizons and DC Thermoelectric Conductivity, Phys. Rev.D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].
[3] E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP10 (2015) 103 [arXiv:1507.00234] [INSPIRE]. · Zbl 1388.83379 · doi:10.1007/JHEP10(2015)103
[4] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity of Magnetised Holographic Matter, JHEP01 (2016) 113 [arXiv:1511.00713] [INSPIRE]. · Zbl 1388.83345 · doi:10.1007/JHEP01(2016)113
[5] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity and Higher Derivative Gravity, Class. Quant. Grav.34 (2017) 135015 [arXiv:1701.01389] [INSPIRE]. · Zbl 1367.83072 · doi:10.1088/1361-6382/aa744a
[6] E. Banks, A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, Holographic thermal DC response in the hydrodynamic limit, Class. Quant. Grav.34 (2017) 045001 [arXiv:1609.08912] [INSPIRE]. · Zbl 1358.83036 · doi:10.1088/1361-6382/aa51df
[7] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/045
[8] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys.17 (2015) 113007 [arXiv:1506.02662] [INSPIRE]. · doi:10.1088/1367-2630/17/11/113007
[9] P. Morse and K. Ingard, Theoretical Acoustics, International series in pure and applied physics, Princeton University Press (1968) [https://books.google.co.uk/books?id=KIL4MV9IE5kC]. · Zbl 1253.81116
[10] J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP02 (2010) 060 [arXiv:0912.0512] [INSPIRE]. · Zbl 1270.81171 · doi:10.1007/JHEP02(2010)060
[11] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[12] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic Stripes, Phys. Rev. Lett.110 (2013) 201603 [arXiv:1211.5600] [INSPIRE]. · doi:10.1103/PhysRevLett.110.201603
[13] A. Donos, Striped phases from holography, JHEP05 (2013) 059 [arXiv:1303.7211] [INSPIRE]. · doi:10.1007/JHEP05(2013)059
[14] B. Withers, Black branes dual to striped phases, Class. Quant. Grav.30 (2013) 155025 [arXiv:1304.0129] [INSPIRE]. · Zbl 1273.83114 · doi:10.1088/0264-9381/30/15/155025
[15] A. Donos and J.P. Gauntlett, Minimally packed phases in holography, JHEP03 (2016) 148 [arXiv:1512.06861] [INSPIRE]. · Zbl 1388.83048 · doi:10.1007/JHEP03(2016)148
[16] T. Andrade and A. Krikun, Commensurate lock-in in holographic non-homogeneous lattices, JHEP03 (2017) 168 [arXiv:1701.04625] [INSPIRE]. · Zbl 1377.81126 · doi:10.1007/JHEP03(2017)168
[17] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
[18] N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald and N.P. Ong, Anomalous Hall effect, Rev. Mod. Phys.82 (2010) 1539 [arXiv:0904.4154]. · doi:10.1103/RevModPhys.82.1539
[19] M.J. Duff, B.E.W. Nilsson and C.N. Pope, The Criterion for Vacuum Stability in Kaluza-Klein Supergravity, Phys. Lett.B 139 (1984) 154 [INSPIRE]. · doi:10.1016/0370-2693(84)91234-6
[20] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys.B 558 (1999) 96 [hep-th/9903214] [INSPIRE]. · Zbl 0951.83033 · doi:10.1016/S0550-3213(99)00419-8
[21] N.R. Cooper, B.I. Halperin and I.M. Ruzin, Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field, Phys. Rev.B 55 (1997) 2344. · doi:10.1103/PhysRevB.55.2344
[22] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE]. · doi:10.1103/PhysRevB.76.144502
[23] M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP08 (2015) 124 [arXiv:1502.03789] [INSPIRE]. · Zbl 1388.83187 · doi:10.1007/JHEP08(2015)124
[24] S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev.D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].
[25] S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett.115 (2015) 221601 [arXiv:1507.00003] [INSPIRE]. · doi:10.1103/PhysRevLett.115.221601
[26] W. Fischler and S. Kundu, Hall Scrambling on Black Hole Horizons, Phys. Rev.D 92 (2015) 046008 [arXiv:1501.01316] [INSPIRE].
[27] E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE]. · Zbl 1367.83072
[28] N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE]. · Zbl 1361.81151
[29] M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett.114 (2015) 021601 [arXiv:1406.1659] [INSPIRE]. · doi:10.1103/PhysRevLett.114.021601
[30] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[31] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE]. · Zbl 1407.82005
[32] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Parity-Violating Hydrodynamics in 2+1 Dimensions, JHEP05 (2012) 102 [arXiv:1112.4498] [INSPIRE]. · doi:10.1007/JHEP05(2012)102
[33] O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, JHEP04 (2012) 091 [arXiv:1103.4851] [INSPIRE]. · Zbl 1348.81325 · doi:10.1007/JHEP04(2012)091
[34] T. Delsate, V. Cardoso and P. Pani, Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes, JHEP06 (2011) 055 [arXiv:1103.5756] [INSPIRE]. · Zbl 1298.83073 · doi:10.1007/JHEP06(2011)055
[35] T. Kimura and T. Nishioka, The Chiral Heat Effect, Prog. Theor. Phys.127 (2012) 1009 [arXiv:1109.6331] [INSPIRE]. · Zbl 1253.81116 · doi:10.1143/PTP.127.1009
[36] J.-W. Chen, N.-E. Lee, D. Maity and W.-Y. Wen, A Holographic Model For Hall Viscosity, Phys. Lett.B 713 (2012) 47 [arXiv:1110.0793] [INSPIRE]. · doi:10.1016/j.physletb.2012.05.026
[37] P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev.D 89 (2014) 026005 [arXiv:1308.0329] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.