×

Relativistic magnetohydrodynamics. (English) Zbl 1380.83108

Summary: We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
81V05 Strong interaction, including quantum chromodynamics
76W05 Magnetohydrodynamics and electrohydrodynamics
80A10 Classical and relativistic thermodynamics
83C22 Einstein-Maxwell equations
78A25 Electromagnetic theory (general)
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory

References:

[1] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon (1987). · Zbl 0655.76001
[2] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [INSPIRE]. · Zbl 1246.81352 · doi:10.1088/1126-6708/2008/04/100
[3] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/045
[4] D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett.103 (2009) 191601 [arXiv:0906.5044] [INSPIRE]. · doi:10.1103/PhysRevLett.103.191601
[5] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP09 (2012) 046 [arXiv:1203.3544] [INSPIRE]. · Zbl 1397.82026 · doi:10.1007/JHEP09(2012)046
[6] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Towards hydrodynamics without an entropy current, Phys. Rev. Lett.109 (2012) 101601 [arXiv:1203.3556] [INSPIRE]. · doi:10.1103/PhysRevLett.109.101601
[7] S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP08 (2014) 165 [arXiv:1312.0220] [INSPIRE]. · Zbl 1333.81066 · doi:10.1007/JHEP08(2014)165
[8] S. Bhattacharyya, Entropy Current from Partition Function: One Example, JHEP07 (2014) 139 [arXiv:1403.7639] [INSPIRE]. · doi:10.1007/JHEP07(2014)139
[9] I. Fouxon and Y. Oz, Exact Scaling Relations In Relativistic Hydrodynamic Turbulence, Phys. Lett.B 694 (2010) 261 [arXiv:0909.3574] [INSPIRE]. · Zbl 1189.76291 · doi:10.1016/j.physletb.2010.09.067
[10] M.P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett.115 (2015) 072501 [arXiv:1503.07514] [INSPIRE]. · doi:10.1103/PhysRevLett.115.072501
[11] F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: The eightfold way to dissipation, JHEP05 (2015) 060 [arXiv:1502.00636] [INSPIRE]. · Zbl 1388.81456 · doi:10.1007/JHEP05(2015)060
[12] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE]. · doi:10.1103/PhysRevB.76.144502
[13] J. Crossno et al., Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene, Science351 (2016) 1058 [arXiv:1509.04713]. · doi:10.1126/science.aad0343
[14] A. Lucas, J. Crossno, K.C. Fong, P. Kim and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, Phys. Rev.B 93 (2016) 075426 [arXiv:1510.01738] [INSPIRE]. · doi:10.1103/PhysRevB.93.075426
[15] A. Lucas, R.A. Davison and S. Sachdev, Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals, Proc. Nat. Acad. Sci.113 (2016) 9463 [arXiv:1604.08598] [INSPIRE]. · doi:10.1073/pnas.1608881113
[16] K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP05 (2014) 134 [arXiv:1310.7024] [INSPIRE]. · doi:10.1007/JHEP05(2014)134
[17] P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP07 (2016) 028 [arXiv:1606.01226] [INSPIRE]. · Zbl 1390.83162 · doi:10.1007/JHEP07(2016)028
[18] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE]. · Zbl 1348.83039
[19] C. Eling, Y. Oz, S. Theisen and S. Yankielowicz, Conformal Anomalies in Hydrodynamics, JHEP05 (2013) 037 [arXiv:1301.3170] [INSPIRE]. · doi:10.1007/JHEP05(2013)037
[20] K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP10 (2013) 186 [arXiv:1307.3234] [INSPIRE]. · Zbl 1342.83382 · doi:10.1007/JHEP10(2013)186
[21] E.G. Harris, Relativistic magnetohydrodynamics, Phys. Rev.108 (1957) 1357. · Zbl 0097.23303 · doi:10.1103/PhysRev.108.1357
[22] S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, arXiv:1610.07392 [INSPIRE]. · Zbl 0097.23303
[23] D. Schubring, Dissipative String Fluids, Phys. Rev.D 91 (2015) 043518 [arXiv:1412.3135] [INSPIRE].
[24] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Parity-Violating Hydrodynamics in 2+1 Dimensions, JHEP05 (2012) 102 [arXiv:1112.4498] [INSPIRE]. · doi:10.1007/JHEP05(2012)102
[25] X.-G. Huang, A. Sedrakian and D.H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields, Annals Phys.326 (2011) 3075 [arXiv:1108.0602] [INSPIRE]. · Zbl 1254.85005 · doi:10.1016/j.aop.2011.08.001
[26] S.I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev.D 94 (2016) 054020 [arXiv:1605.06061] [INSPIRE].
[27] R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev.D 90 (2014) 066006 [arXiv:1406.6019] [INSPIRE].
[28] W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys.118 (1979) 341 [INSPIRE]. · doi:10.1016/0003-4916(79)90130-1
[29] S. Pu, T. Koide and D.H. Rischke, Does stability of relativistic dissipative fluid dynamics imply causality?, Phys. Rev.D 81 (2010) 114039 [arXiv:0907.3906] [INSPIRE].
[30] E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon (1981). · Zbl 1348.83039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.