×

Spatially modulated instabilities of magnetic black branes. (English) Zbl 1306.81218

Summary: We investigate spatially modulated instabilities of magnetically charged \(\operatorname{AdS}_{2} \times {\mathbb{R}^2}\), \(\operatorname{AdS}_{3} \times {\mathbb{R}^2}\) and \(\operatorname{AdS}_{2} \times {\mathbb{R}^3}\) backgrounds in a broad class of theories, including those arising from KK reductions of ten and eleven dimensional supergravity. We show that magnetically charged black brane solutions in \(D = 4, 5\) spacetime dimensions, whose zero temperature near horizon limit approach these backgrounds, can have instabilities that are dual to phases with current density waves that spontaneously break translation symmetry. Our examples include spatially modulated instabilities for a new class of magnetic black brane solutions of \(D = 5\) \(\operatorname{SO}(6)\) gauged supergravity, that we construct in closed form, which are dual to new phases of \(N = 4\) SYM theory.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
83E50 Supergravity

References:

[1] S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
[2] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[3] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[4] F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev.D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].
[5] J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett.103 (2009) 151601 [arXiv:0907.3796] [INSPIRE]. · doi:10.1103/PhysRevLett.103.151601
[6] J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP02 (2010) 060 [arXiv:0912.0512] [INSPIRE]. · Zbl 1270.81171 · doi:10.1007/JHEP02(2010)060
[7] S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett.103 (2009) 141601 [arXiv:0907.3510] [INSPIRE]. · doi:10.1103/PhysRevLett.103.141601
[8] M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett.B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].
[9] S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[10] H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
[11] S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett.99 (2007) 141602 [arXiv:0704.1604] [INSPIRE]. · doi:10.1103/PhysRevLett.99.141602
[12] H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett.106 (2011) 061601 [arXiv:1011.4144] [INSPIRE]. · doi:10.1103/PhysRevLett.106.061601
[13] S. Takeuchi, Modulated instability in five-dimensional U(1) charged AdS black hole with R2-term, arXiv:1108.2064 [INSPIRE]. · Zbl 1306.81065
[14] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[15] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP10 (2011) 034 [arXiv:1106.3883] [INSPIRE]. · Zbl 1303.81145 · doi:10.1007/JHEP10(2011)034
[16] E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/088
[17] A. Almuhairi, AdS3and AdS2magnetic brane solutions, arXiv:1011.1266 [INSPIRE].
[18] A. Almuhairi and J. Polchinski, Magnetic AdS × R2supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
[19] M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black hole instability induced by a magnetic field, Phys. Lett.B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE].
[20] N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett.B 128 (1983) 169 [INSPIRE].
[21] N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav.27 (2010) 235013 [arXiv:1006.2546] [INSPIRE]. · Zbl 1205.83065 · doi:10.1088/0264-9381/27/23/235013
[22] A. Donos and J.P. Gauntlett, Superfluid black branes in AdS4 × S7, JHEP06 (2011) 053 [arXiv:1104.4478] [INSPIRE]. · Zbl 1298.81270 · doi:10.1007/JHEP06(2011)053
[23] Z.-W. Chong, H. Lü and C. Pope, BPS geometries and AdS bubbles, Phys. Lett.B 614 (2005) 96 [hep-th/0412221] [INSPIRE]. · Zbl 1247.83222
[24] L. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys.B 267 (1986) 433 [INSPIRE]. · doi:10.1016/0550-3213(86)90398-6
[25] H. Lü, C. Pope and T.A. Tran, Five-dimensional N = 4, SU(2) × U(1) gauged supergravity from type IIB, Phys. Lett.B 475 (2000) 261 [hep-th/9909203] [INSPIRE]. · Zbl 0961.83063
[26] J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) gauged supergravity from D = 11 supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/083
[27] N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Supersymmetric charged clouds in AdS5, JHEP03 (2011) 070 [arXiv:1005.3552] [INSPIRE]. · Zbl 1301.81106 · doi:10.1007/JHEP03(2011)070
[28] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP08 (2010) 078 [arXiv:0911.3586] [INSPIRE]. · Zbl 1290.83038 · doi:10.1007/JHEP08(2010)078
[29] C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP11 (2010) 151 [arXiv:1005.4690] [INSPIRE]. · Zbl 1294.81178 · doi:10.1007/JHEP11(2010)151
[30] B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP12 (2011) 036 [arXiv:1107.2116] [INSPIRE]. · Zbl 1306.81237 · doi:10.1007/JHEP12(2011)036
[31] M. Cvetič, M. Duff, P. Hoxha, J.T. Liu, H. Lü, et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys.B 558 (1999) 96 [hep-th/9903214] [INSPIRE]. · Zbl 0951.83033 · doi:10.1016/S0550-3213(99)00419-8
[32] E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS5and the fate of the third law of thermodynamics, JHEP03 (2010) 095 [arXiv:0911.4518] [INSPIRE]. · Zbl 1271.83047 · doi:10.1007/JHEP03(2010)095
[33] E. D’Hoker and P. Kraus, Holographic metamagnetism, quantum criticality and crossover behavior, JHEP05 (2010) 083 [arXiv:1003.1302] [INSPIRE]. · Zbl 1287.83029 · doi:10.1007/JHEP05(2010)083
[34] E. D’Hoker and P. Kraus, Magnetic field induced quantum criticality via new asymptotically AdS5solutions, Class. Quant. Grav.27 (2010) 215022 [arXiv:1006.2573] [INSPIRE]. · Zbl 1206.83072 · doi:10.1088/0264-9381/27/21/215022
[35] J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP04 (2009) 102 [arXiv:0901.0676] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/102
[36] A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP12 (2010) 003 [arXiv:1009.3805] [INSPIRE]. · Zbl 1294.81192 · doi:10.1007/JHEP12(2010)003
[37] J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP10 (2008) 072 [arXiv:0807.1100] [INSPIRE]. · Zbl 1245.81200 · doi:10.1088/1126-6708/2008/10/072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.