×

U(1) quasi-hydrodynamics: Schwinger-Keldysh effective field theory and holography. (English) Zbl 07754598

Summary: We study the quasi-hydrodynamics of a system with a softly broken U(1) global symmetry using effective field theory (EFT) and holographic methods. In the gravity side, we consider a holographic Proca model in the limit of small bulk mass, which is responsible for a controllable explicit breaking of the U(1) global symmetry in the boundary field theory. We perform a holographic Schwinger-Keldysh analysis, which allows us to derive the form of the boundary effective action in presence of dissipation. We compare our results with the previously proposed EFT and hydrodynamic theories, and we confirm their validity by computing the low-energy quasi-normal modes spectrum analytically and numerically. Additionally, we derive the broken holographic Ward identity for the U(1) current, and discuss the recently proposed novel transport coefficients for systems with explicitly broken symmetries. The setup considered is expected to serve as a toy model for more realistic situations where quasi-hydrodynamics is at work, such as axial charge relaxation in QCD, spin relaxation in relativistic systems, electric field relaxation in magneto-hydrodynamics, or momentum relaxation in condensed matter systems.

MSC:

81-XX Quantum theory

References:

[1] R. Penco, An introduction to effective field theories, arXiv:2006.16285 [INSPIRE].
[2] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A45 (2012) 473001 [arXiv:1205.5040] [INSPIRE]. · Zbl 1348.83039
[3] Beekman, AJ; Rademaker, L.; van Wezel, J., An introduction to spontaneous symmetry breaking, SciPost Phys. Lect. Notes, 11, 1 (2019)
[4] Martin, PC; Parodi, O.; Pershan, PS, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A, 6, 2401 (1972)
[5] M. Baggioli and B. Goutéraux, Colloquium: hydrodynamics and holography of charge density wave phases, Rev. Mod. Phys.95 (2023) 011001 [arXiv:2203.03298] [INSPIRE].
[6] A. Gromov, A. Lucas and R.M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res.2 (2020) 033124 [arXiv:2003.09429] [INSPIRE].
[7] Halperin, BI; Hohenberg, PC, Hydrodynamic theory of spin waves, Phys. Rev., 188, 898 (1969)
[8] Burgess, CP, Goldstone and pseudoGoldstone bosons in nuclear, particle and condensed matter physics, Phys. Rept., 330, 193 (2000)
[9] G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys.60 (1988) 1129 [INSPIRE].
[10] S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].
[11] M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev. D98 (2018) 036006 [arXiv:1712.10305] [INSPIRE].
[12] Hohenberg, PC; Halperin, BI, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435 (1977)
[13] J.P. Boon and S. Yip, Molecular hydrodynamics, Dover Publications (1991).
[14] Baggioli, M.; Vasin, M.; Brazhkin, VV; Trachenko, K., Gapped momentum states, Phys. Rept., 865, 1 (2020) · Zbl 1497.82020
[15] Ruocco, G.; Sette, F., The history of the “fast sound” in liquid water, Cond. Matter Phys., 11, 29 (2008)
[16] J. Brewer, W. Ke, L. Yan and Y. Yin, Far-from-equilibrium slow modes and momentum anisotropy in expanding plasma, arXiv:2212.00820 [INSPIRE].
[17] W. Ke and Y. Yin, Does a quark-gluon plasma feature an extended hydrodynamic regime?, Phys. Rev. Lett.130 (2023) 212303 [arXiv:2208.01046] [INSPIRE].
[18] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
[19] Ammon, M.; Baggioli, M.; Gray, S.; Grieninger, S., Longitudinal sound and diffusion in holographic massive gravity, JHEP, 10, 064 (2019) · Zbl 1427.83052
[20] A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, Class. Quant. Grav.37 (2020) 045005 [arXiv:1906.03132] [INSPIRE]. · Zbl 1478.83146
[21] Armas, J.; Jain, A., Viscoelastic hydrodynamics and holography, JHEP, 01, 126 (2020) · Zbl 1434.83119
[22] M. Ammon et al., On the hydrodynamic description of holographic viscoelastic models, Phys. Lett. B808 (2020) 135691 [arXiv:2001.05737] [INSPIRE]. · Zbl 1473.83082
[23] Arean, D.; Baggioli, M.; Grieninger, S.; Landsteiner, K., A holographic superfluid symphony, JHEP, 11, 206 (2021) · Zbl 1521.81281
[24] Ahn, Y., Holography and magnetohydrodynamics with dynamical gauge fields, JHEP, 02, 012 (2023) · Zbl 1541.81148
[25] P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
[26] Crossley, M.; Glorioso, P.; Liu, H.; Wang, Y., Off-shell hydrodynamics from holography, JHEP, 02, 124 (2016) · Zbl 1388.83344
[27] Haehl, FM; Loganayagam, R.; Rangamani, M., The fluid manifesto: emergent symmetries, hydrodynamics, and black holes, JHEP, 01, 184 (2016) · Zbl 1388.83350
[28] S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].
[29] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123 (2014)
[30] A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press (2011) [doi:10.1017/cbo9781139003667]. · Zbl 1267.82003
[31] H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoSTASI2017 (2018) 008 [arXiv:1805.09331] [INSPIRE].
[32] Chakrabarty, B., Nonlinear Langevin dynamics via holography, JHEP, 01, 165 (2020)
[33] Jana, C.; Loganayagam, R.; Rangamani, M., Open quantum systems and Schwinger-Keldysh holograms, JHEP, 07, 242 (2020) · Zbl 1451.83042
[34] Loganayagam, R.; Ray, K.; Sharma, SK; Sivakumar, A., Holographic KMS relations at finite density, JHEP, 03, 233 (2021) · Zbl 1461.83061
[35] Ghosh, JK, Effective field theory of stochastic diffusion from gravity, JHEP, 05, 130 (2021) · Zbl 1466.83030
[36] Bu, Y.; Demircik, T.; Lublinsky, M., All order effective action for charge diffusion from Schwinger-Keldysh holography, JHEP, 05, 187 (2021) · Zbl 1466.83096
[37] Bu, Y.; Fujita, M.; Lin, S., Ginzburg-Landau effective action for a fluctuating holographic superconductor, JHEP, 09, 168 (2021)
[38] He, T.; Loganayagam, R.; Rangamani, M.; Virrueta, J., An effective description of momentum diffusion in a charged plasma from holography, JHEP, 01, 145 (2022) · Zbl 1521.81259
[39] Y. Bu and B. Zhang, Schwinger-Keldysh effective action for a relativistic Brownian particle in the AdS/CFT correspondence, Phys. Rev. D104 (2021) 086002 [arXiv:2108.10060] [INSPIRE].
[40] Bu, Y.; Sun, X.; Zhang, B., Holographic Schwinger-Keldysh field theory of SU(2) diffusion, JHEP, 08, 223 (2022) · Zbl 1522.81198
[41] He, T.; Loganayagam, R.; Rangamani, M.; Virrueta, J., An effective description of charge diffusion and energy transport in a charged plasma from holography, JHEP, 03, 161 (2023) · Zbl 07690725
[42] J.K. Ghosh and M.A. Momen, An effective theory of anomalous momentum diffusion from holography, arXiv:2208.04992 [INSPIRE].
[43] He, T., The timbre of Hawking gravitons: an effective description of energy transport from holography, JHEP, 09, 092 (2022) · Zbl 1531.83076
[44] Y. Bu, B. Zhang and J. Zhang, Nonlinear effective dynamics of a Brownian particle in magnetized plasma, Phys. Rev. D106 (2022) 086014 [arXiv:2210.02274] [INSPIRE].
[45] Loganayagam, R.; Rangamani, M.; Virrueta, J., Holographic open quantum systems: toy models and analytic properties of thermal correlators, JHEP, 03, 153 (2023) · Zbl 07690717
[46] Pantelidou, C.; Withers, B., Thermal three-point functions from holographic Schwinger-Keldysh contours, JHEP, 04, 050 (2023) · Zbl 07693938
[47] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
[48] J. Armas, A. Jain and R. Lier, Approximate symmetries, pseudo-Goldstones, and the second law of thermodynamics, arXiv:2112.14373 [INSPIRE].
[49] M. Baggioli and B. Goutéraux, Colloquium: hydrodynamics and holography of charge density wave phases, Rev. Mod. Phys.95 (2023) 011001 [arXiv:2203.03298] [INSPIRE].
[50] Baggioli, M.; Landry, M., Effective field theory for quasicrystals and phasons dynamics, SciPost Phys., 9, 062 (2020)
[51] L.V. Delacrétaz, B. Goutéraux and V. Ziogas, Damping of pseudo-Goldstone fields, Phys. Rev. Lett.128 (2022) 141601 [arXiv:2111.13459] [INSPIRE].
[52] Landry, MJ, Non-equilibrium effective field theory and second sound, JHEP, 04, 213 (2021)
[53] M. Baggioli, Homogeneous holographic viscoelastic models and quasicrystals, Phys. Rev. Res.2 (2020) 022022 [arXiv:2001.06228] [INSPIRE].
[54] M.J. Landry, Dynamical chemistry: non-equilibrium effective actions for reactive fluids, J. Stat. Mech.2207 (2022) 073205 [arXiv:2006.13220] [INSPIRE]. · Zbl 1539.82127
[55] Ammon, M., Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography, JHEP, 03, 015 (2022) · Zbl 1522.83271
[56] E. Grossi, A. Soloviev, D. Teaney and F. Yan, Transport and hydrodynamics in the chiral limit, Phys. Rev. D102 (2020) 014042 [arXiv:2005.02885] [INSPIRE].
[57] E. Grossi, A. Soloviev, D. Teaney and F. Yan, Soft pions and transport near the chiral critical point, Phys. Rev. D104 (2021) 034025 [arXiv:2101.10847] [INSPIRE].
[58] Cao, X.; Baggioli, M.; Liu, H.; Li, D., Pion dynamics in a soft-wall AdS-QCD model, JHEP, 12, 113 (2022) · Zbl 1536.81256
[59] M.J. Landry, Higher-form and (non-)Stückelberg symmetries in non-equilibrium systems, arXiv:2101.02210 [INSPIRE].
[60] M. Baggioli, M. Landry and A. Zaccone, Deformations, relaxation, and broken symmetries in liquids, solids, and glasses: a unified topological field theory, Phys. Rev. E105 (2022) 024602 [arXiv:2101.05015] [INSPIRE].
[61] Abbasi, N.; Ghazi, A.; Taghinavaz, F.; Tavakol, O., Magneto-transport in an anomalous fluid with weakly broken symmetries, in weak and strong regime, JHEP, 05, 206 (2019)
[62] A. Amoretti, D.K. Brattan, L. Martinoia and I. Matthaiakakis, Restoring time-reversal covariance in relaxed hydrodynamics, arXiv:2304.01248 [INSPIRE].
[63] Donos, A.; Kailidis, P.; Pantelidou, C., Dissipation in holographic superfluids, JHEP, 09, 134 (2021) · Zbl 1534.83023
[64] I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D65 (2002) 105007 [hep-th/0202056] [INSPIRE].
[65] Gürsoy, U.; Jansen, A., (Non)renormalization of anomalous conductivities and holography, JHEP, 10, 092 (2014) · Zbl 1333.83187
[66] A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev. D90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].
[67] Jimenez-Alba, A.; Landsteiner, K.; Liu, Y.; Sun, Y-W, Anomalous magnetoconductivity and relaxation times in holography, JHEP, 07, 117 (2015)
[68] Iatrakis, I.; Lin, S.; Yin, Y., The anomalous transport of axial charge: topological vs non-topological fluctuations, JHEP, 09, 030 (2015) · Zbl 1388.81724
[69] I. Iatrakis, S. Lin and Y. Yin, Axial current generation by P-odd domains in QCD matter, Phys. Rev. Lett.114 (2015) 252301 [arXiv:1411.2863] [INSPIRE].
[70] F. Bigazzi, A.L. Cotrone and F. Porri, Universality of the Chern-Simons diffusion rate, Phys. Rev. D98 (2018) 106023 [arXiv:1804.09942] [INSPIRE].
[71] Rai, N.; Megias, E., Anomalous conductivities in the holographic Stückelberg model, JHEP, 06, 215 (2023) · Zbl 07716921
[72] Amoretti, A.; Brattan, DK; Martinoia, L.; Matthaiakakis, I., Non-dissipative electrically driven fluids, JHEP, 05, 218 (2023) · Zbl 07702033
[73] Crossley, M.; Glorioso, P.; Liu, H., Effective field theory of dissipative fluids, JHEP, 09, 095 (2017) · Zbl 1382.81199
[74] de Boer, J.; Heller, MP; Pinzani-Fokeeva, N., Holographic Schwinger-Keldysh effective field theories, JHEP, 05, 188 (2019) · Zbl 1416.83099
[75] Glorioso, P.; Crossley, M.; Liu, H., Effective field theory of dissipative fluids. Part II. Classical limit, dynamical KMS symmetry and entropy current, JHEP, 09, 096 (2017) · Zbl 1382.81205
[76] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[77] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[78] Bianchi, M.; Freedman, DZ; Skenderis, K., Holographic renormalization, Nucl. Phys. B, 631, 159 (2002) · Zbl 0995.81075
[79] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009
[80] R.E. Hoult and P. Kovtun, Causal first-order hydrodynamics from kinetic theory and holography, Phys. Rev. D106 (2022) 066023 [arXiv:2112.14042] [INSPIRE].
[81] Donos, A.; Gauntlett, JP; Ziogas, V., Diffusion for holographic lattices, JHEP, 03, 056 (2018) · Zbl 1388.83428
[82] Bu, Y.; Lublinsky, M.; Sharon, A., U(1) current from the AdS/CFT: diffusion, conductivity and causality, JHEP, 04, 136 (2016) · Zbl 1388.83191
[83] Donos, A.; Kailidis, P.; Pantelidou, C., Holographic dissipation from the symplectic current, JHEP, 10, 058 (2022) · Zbl 1534.83023
[84] Martin, PC; Siggia, ED; Rose, HA, Statistical dynamics of classical systems, Phys. Rev. A, 8, 423 (1973)
[85] A. Kapustin and L. Mrini, Universal time-dependent Ginzburg-Landau theory, Phys. Rev. B107 (2023) 144514 [arXiv:2209.03391] [INSPIRE].
[86] Andrade, T.; Baggioli, M.; Krikun, A.; Poovuttikul, N., Pinning of longitudinal phonons in holographic spontaneous helices, JHEP, 02, 085 (2018) · Zbl 1387.81298
[87] Andrade, T.; Krikun, A., Coherent vs incoherent transport in holographic strange insulators, JHEP, 05, 119 (2019) · Zbl 1416.83096
[88] Andrade, T.; Baggioli, M.; Krikun, A., Phase relaxation and pattern formation in holographic gapless charge density waves, JHEP, 03, 292 (2021)
[89] Hongo, M., Spin relaxation rate for heavy quarks in weakly coupled QCD plasma, JHEP, 08, 263 (2022)
[90] S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].
[91] Hernandez, J.; Kovtun, P., Relativistic magnetohydrodynamics, JHEP, 05, 001 (2017) · Zbl 1380.83108
[92] Grozdanov, S.; Poovuttikul, N., Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP, 04, 141 (2019)
[93] Poovuttikul, N.; Rajagopal, A., Operator lifetime and the force-free electrodynamic limit of magnetised holographic plasma, JHEP, 09, 091 (2021) · Zbl 1472.83085
[94] Donos, A.; Pantelidou, C., Higgs/amplitude mode dynamics from holography, JHEP, 08, 246 (2022) · Zbl 1522.81426
[95] A. Donos and P. Kailidis, Nearly critical superluids in Keldysh-Schwinger formalism, arXiv:2304.06008 [INSPIRE]. · Zbl 1536.83028
[96] J.C. Maxwell, IV. On the dynamical theory of gases, Phil. Trans. Roy. Soc. Lond.157 (1867) 49.
[97] C. Cattaneo, Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée (in French), C. R. Acad. Sci. Paris Ser. I247 (1958) 431. · Zbl 1339.35135
[98] Israel, W.; Stewart, JM, Transient relativistic thermodynamics and kinetic theory, Annals Phys., 118, 341 (1979)
[99] L. Gavassino, M. Antonelli and B. Haskell, Symmetric-hyperbolic quasihydrodynamics, Phys. Rev. D106 (2022) 056010 [arXiv:2207.14778] [INSPIRE].
[100] V. Nosenko, J. Goree and A. Piel, Cutoff wave number for shear waves in a two-dimensional Yukawa system (dusty plasma), Phys. Rev. Lett.97 (2006) 115001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.