×

Holography and magnetohydrodynamics with dynamical gauge fields. (English) Zbl 1541.81148

Summary: Within the framework of holography, the Einstein-Maxwell action with Dirichlet boundary conditions corresponds to a dual conformal field theory in presence of an external gauge field. Nevertheless, in many real-world applications, e.g., magnetohydrodynamics, plasma physics, superconductors, etc. dynamical gauge fields and Coulomb interactions are fundamental. In this work, we consider bottom-up holographic models at finite magnetic field and (free) charge density in presence of dynamical boundary gauge fields which are introduced using mixed boundary conditions. We numerically study the spectrum of the lowest quasi-normal modes and successfully compare the obtained results to magnetohydrodynamics theory in \(2 + 1\) dimensions. Surprisingly, as far as the electromagnetic coupling is small enough, we find perfect agreement even in the large magnetic field limit. Our results prove that a holographic description of magnetohydrodynamics does not necessarily need higher-form bulk fields but can be consistently derived using mixed boundary conditions for standard gauge fields.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83E05 Geometrodynamics and the holographic principle
76W05 Magnetohydrodynamics and electrohydrodynamics

References:

[1] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[3] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
[4] E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings: circumnavigating theoretical physics. A conference in tribute to Ian Kogan, (2003), p. 1137 [hep-th/0307041] [INSPIRE].
[5] Klebanov, IR; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B, 556, 89 (1999) · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[6] Leigh, RG; Petkou, AC, SL(2, Z) action on three-dimensional CFTs and holography, JHEP, 12, 020 (2003) · doi:10.1088/1126-6708/2003/12/020
[7] Yee, H-U, A note on AdS/CFT dual of SL(2, Z) action on 3D conformal field theories with U(1) symmetry, Phys. Lett. B, 598, 139 (2004) · Zbl 1247.81436 · doi:10.1016/j.physletb.2004.05.082
[8] P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.144 (1982) 249 [INSPIRE]. · Zbl 0606.53044
[9] Marolf, D.; Ross, SF, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP, 11, 085 (2006) · doi:10.1088/1126-6708/2006/11/085
[10] W. Cottrell, A. Hashimoto, A. Loveridge and D. Pettengill, Stability and boundedness in AdS/CFT with double trace deformations II: vector fields, arXiv:1711.01257 [INSPIRE]. · Zbl 1416.81118
[11] Montull, M.; Pomarol, A.; Silva, PJ, The holographic superconductor vortex, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.091601
[12] Maeda, K.; Natsuume, M.; Okamura, T., On two pieces of folklore in the AdS/CFT duality, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.046002
[13] Domenech, O.; Montull, M.; Pomarol, A.; Salvio, A.; Silva, PJ, Emergent gauge fields in holographic superconductors, JHEP, 08, 033 (2010) · Zbl 1291.82138 · doi:10.1007/JHEP08(2010)033
[14] Hartnoll, SA; Herzog, CP; Horowitz, GT, Holographic superconductors, JHEP, 12, 015 (2008) · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[15] Compere, G.; Marolf, D., Setting the boundary free in AdS/CFT, Class. Quant. Grav., 25 (2008) · Zbl 1151.83305 · doi:10.1088/0264-9381/25/19/195014
[16] Ecker, C.; van der Schee, W.; Mateos, D.; Casalderrey-Solana, J., Holographic evolution with dynamical boundary gravity, JHEP, 03, 137 (2022) · Zbl 1522.83287 · doi:10.1007/JHEP03(2022)137
[17] E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[18] Berkooz, M.; Sever, A.; Shomer, A., ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP, 05, 034 (2002) · doi:10.1088/1126-6708/2002/05/034
[19] Hartman, T.; Rastelli, L., Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP, 01, 019 (2008) · doi:10.1088/1126-6708/2008/01/019
[20] P.J. Silva, Dynamical gauge fields in holographic superconductors, Fortsch. Phys.59 (2011) 756 [INSPIRE]. · Zbl 1222.81248
[21] Rozali, M.; Smyth, D.; Sorkin, E., Holographic Higgs phases, JHEP, 08, 118 (2012) · doi:10.1007/JHEP08(2012)118
[22] Albash, T.; Johnson, CV, Vortex and droplet engineering in holographic superconductors, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.126009
[23] Gao, X.; Kaminski, M.; Zeng, H-B; Zhang, H-Q, Non-equilibrium field dynamics of an honest holographic superconductor, JHEP, 11, 112 (2012) · doi:10.1007/JHEP11(2012)112
[24] Salvio, A., Holographic superfluids and superconductors in dilaton-gravity, JHEP, 09, 134 (2012) · doi:10.1007/JHEP09(2012)134
[25] Salvio, A., Superconductivity, superfluidity and holography, J. Phys. Conf. Ser., 442 (2013) · doi:10.1088/1742-6596/442/1/012040
[26] Dias, OJC; Horowitz, GT; Iqbal, N.; Santos, JE, Vortices in holographic superfluids and superconductors as conformal defects, JHEP, 04, 096 (2014) · doi:10.1007/JHEP04(2014)096
[27] Montull, M.; Pujolas, O.; Salvio, A.; Silva, PJ, Flux periodicities and quantum hair on holographic superconductors, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.181601
[28] del Campo, A.; Gómez-Ruiz, FJ; Li, Z-H; Xia, C-Y; Zeng, H-B; Zhang, H-Q, Universal statistics of vortices in a newborn holographic superconductor: beyond the Kibble-Zurek mechanism, JHEP, 06, 061 (2021) · doi:10.1007/JHEP06(2021)061
[29] Zeng, H-B; Xia, C-Y; Zhang, H-Q, Topological defects as relics of spontaneous symmetry breaking from black hole physics, JHEP, 03, 136 (2021) · Zbl 1461.83037 · doi:10.1007/JHEP03(2021)136
[30] Natsuume, M.; Okamura, T., Holographic Meissner effect, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.086005
[31] Jokela, N.; Lifschytz, G.; Lippert, M., Holographic anyonic superfluidity, JHEP, 10, 014 (2013) · doi:10.1007/JHEP10(2013)014
[32] Brattan, DK; Lifschytz, G., Holographic plasma and anyonic fluids, JHEP, 02, 090 (2014) · doi:10.1007/JHEP02(2014)090
[33] Brattan, DK, A strongly coupled anyon material, JHEP, 11, 214 (2015) · Zbl 1388.83189 · doi:10.1007/JHEP11(2015)214
[34] Gran, U.; Tornsö, M.; Zingg, T., Holographic plasmons, JHEP, 11, 176 (2018) · Zbl 1405.81131 · doi:10.1007/JHEP11(2018)176
[35] Gran, U.; Tornsö, M.; Zingg, T., Plasmons in holographic graphene, SciPost Phys., 8, 093 (2020) · doi:10.21468/SciPostPhys.8.6.093
[36] Gran, U.; Tornsö, M.; Zingg, T., Exotic holographic dispersion, JHEP, 02, 032 (2019) · Zbl 1411.81179 · doi:10.1007/JHEP02(2019)032
[37] Gran, U.; Tornsö, M.; Zingg, T., Holographic response of electron clouds, JHEP, 03, 019 (2019) · Zbl 1411.81179 · doi:10.1007/JHEP03(2019)019
[38] Baggioli, M.; Gran, U.; Alba, AJ; Tornsö, M.; Zingg, T., Holographic plasmon relaxation with and without broken translations, JHEP, 09, 013 (2019) · doi:10.1007/JHEP09(2019)013
[39] Gran, U.; Jokela, N.; Musso, D.; Ramallo, AV; Tornsö, M., Holographic fundamental matter in multilayered media, JHEP, 12, 038 (2019) · Zbl 1431.83155 · doi:10.1007/JHEP12(2019)038
[40] Baggioli, M.; Gran, U.; Tornsö, M., Transverse collective modes in interacting holographic plasmas, JHEP, 04, 106 (2020) · doi:10.1007/JHEP04(2020)106
[41] Baggioli, M.; Gran, U.; Tornsö, M., Collective modes of polarizable holographic media in magnetic fields, JHEP, 06, 014 (2021) · doi:10.1007/JHEP06(2021)014
[42] Romero-Bermúdez, A., Density response of holographic metallic IR fixed points with translational pseudo-spontaneous symmetry breaking, JHEP, 07, 153 (2019) · doi:10.1007/JHEP07(2019)153
[43] D. Pines, Theory of quantum liquids: normal Fermi liquids, CRC Press (2018).
[44] Mauri, E.; Stoof, HTC, Screening of Coulomb interactions in holography, JHEP, 04, 035 (2019) · Zbl 1415.81089 · doi:10.1007/JHEP04(2019)035
[45] Romero-Bermúdez, A.; Krikun, A.; Schalm, K.; Zaanen, J., Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev. B, 99 (2019) · doi:10.1103/PhysRevB.99.235149
[46] Grozdanov, S.; Hofman, DM; Iqbal, N., Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.096003
[47] Grozdanov, S.; Poovuttikul, N., Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP, 04, 141 (2019) · doi:10.1007/JHEP04(2019)141
[48] Poovuttikul, N.; Rajagopal, A., Operator lifetime and the force-free electrodynamic limit of magnetised holographic plasma, JHEP, 09, 091 (2021) · Zbl 1472.83085 · doi:10.1007/JHEP09(2021)091
[49] A. Das, R. Gregory and N. Iqbal, Higher-form symmetries, anomalous magnetohydrodynamics, and holography, arXiv:2205.03619 [INSPIRE].
[50] Hernandez, J.; Kovtun, P., Relativistic magnetohydrodynamics, JHEP, 05, 001 (2017) · Zbl 1380.83108 · doi:10.1007/JHEP05(2017)001
[51] Grozdanov, S.; Lucas, A.; Poovuttikul, N., Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.086012
[52] Armas, J.; Gath, J.; Jain, A.; Pedersen, AV, Dissipative hydrodynamics with higher-form symmetry, JHEP, 05, 192 (2018) · doi:10.1007/JHEP05(2018)192
[53] B. Benenowski and N. Poovuttikul, Classification of magnetohydrodynamic transport at strong magnetic field, arXiv:1911.05554 [INSPIRE].
[54] Armas, J.; Jain, A., Magnetohydrodynamics as superfluidity, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.141603
[55] Armas, J.; Jain, A., One-form superfluids & magnetohydrodynamics, JHEP, 01, 041 (2020) · Zbl 1434.83118 · doi:10.1007/JHEP01(2020)041
[56] Hofman, DM; Iqbal, N., Generalized global symmetries and holography, SciPost Phys., 4, 005 (2018) · doi:10.21468/SciPostPhys.4.1.005
[57] Hofman, DM; Iqbal, N., Goldstone modes and photonization for higher form symmetries, SciPost Phys., 6, 006 (2019) · doi:10.21468/SciPostPhys.6.1.006
[58] DeWolfe, O.; Higginbotham, K., Generalized symmetries and 2-groups via electromagnetic duality in AdS/CFT, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.026011
[59] Grozdanov, S.; Poovuttikul, N., Generalized global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.106005
[60] Armas, J.; Jain, A., Viscoelastic hydrodynamics and holography, JHEP, 01, 126 (2020) · Zbl 1434.83119 · doi:10.1007/JHEP01(2020)126
[61] Hartnoll, SA; Kovtun, PK; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B, 76 (2007) · doi:10.1103/PhysRevB.76.144502
[62] Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP, 05, 102 (2012) · doi:10.1007/JHEP05(2012)102
[63] Kovtun, P., Thermodynamics of polarized relativistic matter, JHEP, 07, 028 (2016) · Zbl 1390.83162 · doi:10.1007/JHEP07(2016)028
[64] Jeong, H-S; Kim, K-Y; Sun, Y-W, Quasi-normal modes of dyonic black holes and magneto-hydrodynamics, JHEP, 07, 065 (2022) · Zbl 1522.83198 · doi:10.1007/JHEP07(2022)065
[65] Hartnoll, SA; Herzog, CP, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.106012
[66] Amoretti, A.; Arean, D.; Brattan, DK; Magnoli, N., Hydrodynamic magneto-transport in charge density wave states, JHEP, 05, 027 (2021) · Zbl 1466.81048 · doi:10.1007/JHEP05(2021)027
[67] Amoretti, A.; Brattan, DK; Magnoli, N.; Scanavino, M., Magneto-thermal transport implies an incoherent Hall conductivity, JHEP, 08, 097 (2020) · doi:10.1007/JHEP08(2020)097
[68] Baggioli, M.; Grieninger, S.; Li, L., Magnetophonons & type-B Goldstones from hydrodynamics to holography, JHEP, 09, 037 (2020) · doi:10.1007/JHEP09(2020)037
[69] Blake, M., Magnetotransport from the fluid/gravity correspondence, JHEP, 10, 078 (2015) · Zbl 1388.83186 · doi:10.1007/JHEP10(2015)078
[70] Donos, A.; Gauntlett, JP; Griffin, T.; Melgar, L., DC conductivity of magnetised holographic matter, JHEP, 01, 113 (2016) · Zbl 1388.83345 · doi:10.1007/JHEP01(2016)113
[71] Amoretti, A.; Braggio, A.; Maggiore, N.; Magnoli, N.; Musso, D., Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP, 09, 160 (2014) · doi:10.1007/JHEP09(2014)160
[72] Amoretti, A.; Musso, D., Magneto-transport from momentum dissipating holography, JHEP, 09, 094 (2015) · Zbl 1388.83161 · doi:10.1007/JHEP09(2015)094
[73] Ammon, M., Chiral hydrodynamics in strong external magnetic fields, JHEP, 04, 078 (2021) · doi:10.1007/JHEP04(2021)078
[74] Baggioli, M.; Kim, K-Y; Li, L.; Li, W-J, Holographic axion model: a simple gravitational tool for quantum matter, Sci. China Phys. Mech. Astron., 64 (2021) · doi:10.1007/s11433-021-1681-8
[75] Baggioli, M.; Pujolas, O., Electron-phonon interactions, metal-insulator transitions, and holographic massive gravity, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.251602
[76] Alberte, L.; Ammon, M.; Jiménez-Alba, A.; Baggioli, M.; Pujolàs, O., Holographic phonons, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.171602
[77] Ammon, M.; Baggioli, M.; Gray, S.; Grieninger, S.; Jain, A., On the hydrodynamic description of holographic viscoelastic models, Phys. Lett. B, 808 (2020) · Zbl 1473.83082 · doi:10.1016/j.physletb.2020.135691
[78] Baggioli, M.; Goutéraux, B., Colloquium: hydrodynamics and holography of charge density wave phases, Rev. Mod. Phys., 95 (2023) · doi:10.1103/RevModPhys.95.011001
[79] Hattori, K.; Hongo, M.; Huang, X-G, New developments in relativistic magnetohydrodynamics, Symmetry, 14, 1851 (2022) · doi:10.3390/sym14091851
[80] Amoretti, A.; Brattan, DK, On the hydrodynamics of (2 + 1)-dimensional strongly coupled relativistic theories in an external magnetic field, Mod. Phys. Lett. A, 37, 2230010 (2022) · doi:10.1142/S0217732322300105
[81] D.H. Whittum, Introduction to electrodynamics for microwave linear accelerators, in Joint CERN-U.S.-Japan accelerator school. Course on frontiers of accelerator technology: RF engineering for particle accelerators, (1998), p. 1 [INSPIRE].
[82] O. Heaviside, XIX. On the extra current, London Edinburgh Dublin Phil. Mag. J. Sci.2 (1876) 135.
[83] Baggioli, M.; Vasin, M.; Brazhkin, VV; Trachenko, K., Gapped momentum states, Phys. Rept., 865, 1 (2020) · Zbl 1497.82020 · doi:10.1016/j.physrep.2020.04.002
[84] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A, 45 (2012) · Zbl 1348.83039 · doi:10.1088/1751-8113/45/47/473001
[85] Kim, K-Y; Kim, KK; Seo, Y.; Sin, S-J, Thermoelectric conductivities at finite magnetic field and the Nernst effect, JHEP, 07, 027 (2015) · Zbl 1388.83054 · doi:10.1007/JHEP07(2015)027
[86] El-Showk, S.; Nakayama, Y.; Rychkov, S., What Maxwell theory in D ≠ 4 teaches us about scale and conformal invariance, Nucl. Phys. B, 848, 578 (2011) · Zbl 1215.78006 · doi:10.1016/j.nuclphysb.2011.03.008
[87] Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept.569 (2015) 1 [arXiv:1302.0884] [INSPIRE]. · Zbl 1202.81191
[88] Amoretti, A., Hydrodynamical description for magneto-transport in the strange metal phase of Bi-2201, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.023387
[89] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.111601
[90] Kovtun, P.; Son, DT; Starinets, AO, Holography and hydrodynamics: diffusion on stretched horizons, JHEP, 10, 064 (2003) · doi:10.1088/1126-6708/2003/10/064
[91] Jain, S.; Samanta, R.; Trivedi, SP, The shear viscosity in anisotropic phases, JHEP, 10, 028 (2015) · Zbl 1388.83269 · doi:10.1007/JHEP10(2015)028
[92] S.I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D94 (2016) 054020 [arXiv:1605.06061] [Erratum ibid.96 (2017) 019903] [INSPIRE].
[93] Rebhan, A.; Steineder, D., Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.021601
[94] D. Giataganas, Observables in strongly coupled anisotropic theories, PoSCorfu2012 (2013) 122 [arXiv:1306.1404] [INSPIRE].
[95] Mamo, KA, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, JHEP, 10, 070 (2012) · doi:10.1007/JHEP10(2012)070
[96] Kaminski, M.; Landsteiner, K.; Mas, J.; Shock, JP; Tarrio, J., Holographic operator mixing and quasinormal modes on the brane, JHEP, 02, 021 (2010) · Zbl 1270.81178 · doi:10.1007/JHEP02(2010)021
[97] Davison, RA; Kaplis, NK, Bosonic excitations of the AdS_4Reissner-Nordström black hole, JHEP, 12, 037 (2011) · Zbl 1306.81211 · doi:10.1007/JHEP12(2011)037
[98] Denef, F.; Hartnoll, SA; Sachdev, S., Quantum oscillations and black hole ringing, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.126016
[99] Donos, A.; Gauntlett, JP; Sonner, J.; Withers, B., Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP, 03, 108 (2013) · Zbl 1342.83068 · doi:10.1007/JHEP03(2013)108
[100] Jeong, H-S; Kim, K-Y; Sun, Y-W, Bound of diffusion constants from pole-skipping points: spontaneous symmetry breaking and magnetic field, JHEP, 07, 105 (2021) · doi:10.1007/JHEP07(2021)105
[101] Karch, A.; Sondhi, SL, Non-linear, finite frequency quantum critical transport from AdS/CFT, JHEP, 01, 149 (2011) · Zbl 1214.83056 · doi:10.1007/JHEP01(2011)149
[102] Horowitz, GT; Iqbal, N.; Santos, JE, Simple holographic model of nonlinear conductivity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.126002
[103] Withers, B., Nonlinear conductivity and the ringdown of currents in metallic holography, JHEP, 10, 008 (2016) · Zbl 1390.83148 · doi:10.1007/JHEP10(2016)008
[104] S. Vardhan, S. Grozdanov, S. Leutheusser and H. Liu, A new formulation of strong-field magnetohydrodynamics for neutron stars, Tech. Rep. MIT-CTP/5442 (2022) [INSPIRE].
[105] M. Baggioli, H.-S. Jeong, K.-Y. Kim and Y.-W. Sun, Collective excitations in holographic superconductors, work in progress, to appear soon (2022).
[106] Hirono, Y.; Kharzeev, DE; Yin, Y., New quantum effects in relativistic magnetohydrodynamics, Nucl. Phys. A, 967, 840 (2017) · doi:10.1016/j.nuclphysa.2017.06.042
[107] Hattori, K.; Hirono, Y.; Yee, H-U; Yin, Y., Magneto-hydrodynamics with chiral anomaly: phases of collective excitations and instabilities, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.065023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.