×

Holographic Schwinger-Keldysh effective field theories. (English) Zbl 1416.83099

Summary: We construct a holographic dual of the Schwinger-Keldysh effective action for the dissipative low-energy dynamics of relativistic charged matter at strong coupling in a fixed thermal background. To do so, we use a mixed signature bulk spacetime whereby an eternal asymptotically anti-de Sitter black hole is glued to its Euclidean counterpart along an initial time slice in a way to match the desired double-time contour of the dual field theory. Our results are consistent with existing literature and can be regarded as a fully-ab initio derivation of a Schwinger-Keldysh effective action. In addition, we provide a simple infrared effective action for the near horizon region that drives all the dissipation and can be viewed as an alternative to the membrane paradigm approximation.

MSC:

83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] G. ’t Hooft, 50 years of Yang-Mills theory, World Scientific, Singapore (2005). · Zbl 1058.81005
[2] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[4] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126
[5] R. Shankar, Gauge theories, Cambridge University Press, Cambridge U.K. (2017).
[6] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.2 (1961) 407 [INSPIRE]. · Zbl 0098.43503
[7] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [INSPIRE].
[8] A. Kamenev, Many-body theory of non-equilibrium systems, cond-mat/0412296. · Zbl 1505.82001
[9] W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture and the big questions, Ann. Rev. Nucl. Part. Sci.68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
[10] P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys.E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].
[11] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Black holes in higher dimensions, pp. 348-383, 2012, arXiv:1107.5780 [INSPIRE]. · Zbl 1263.83009
[12] W. Florkowski, M.P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys.81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].
[13] P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, arXiv:1712.05815 [INSPIRE]. · Zbl 1184.83026
[14] F.M. Haehl, R. Loganayagam and M. Rangamani, The fluid manifesto: emergent symmetries, hydrodynamics and black holes, JHEP01 (2016) 184 [arXiv:1510.02494] [INSPIRE]. · Zbl 1388.83350
[15] M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP09 (2017) 095 [arXiv:1511.03646] [INSPIRE]. · Zbl 1382.81199
[16] F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP04 (2016) 039 [arXiv:1511.07809] [INSPIRE]. · Zbl 1388.83351
[17] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, JHEP06 (2017) 069 [arXiv:1610.01940] [INSPIRE]. · Zbl 1380.81369
[18] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology, JHEP06 (2017) 070 [arXiv:1610.01941] [INSPIRE]. · Zbl 1380.81370
[19] P. Glorioso, H. Liu and S. Rajagopal, Global anomalies, discrete symmetries and hydrodynamic effective actions, JHEP01 (2019) 043 [arXiv:1710.03768] [INSPIRE]. · Zbl 1409.83187
[20] K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, JHEP09 (2018) 127 [arXiv:1701.07436] [INSPIRE]. · Zbl 1398.81146
[21] P. Gao and H. Liu, Emergent supersymmetry in local equilibrium systems, JHEP01 (2018) 040 [arXiv:1701.07445] [INSPIRE]. · Zbl 1384.81134
[22] P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP09 (2017) 096 [arXiv:1701.07817] [INSPIRE]. · Zbl 1382.81205
[23] F.M. Haehl, R. Loganayagam and M. Rangamani, Effective action for relativistic hydrodynamics: fluctuations, dissipation and entropy inflow, JHEP10 (2018) 194 [arXiv:1803.11155] [INSPIRE]. · Zbl 1402.83021
[24] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, SciPost Phys.5 (2018) 053 [arXiv:1804.04654] [INSPIRE].
[25] S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev.D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].
[26] P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP07 (2014) 123 [arXiv:1405.3967] [INSPIRE].
[27] F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett.114 (2015) 201601 [arXiv:1412.1090] [INSPIRE]. · Zbl 1388.81456
[28] F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP05 (2015) 060 [arXiv:1502.00636] [INSPIRE]. · Zbl 1388.81456
[29] M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP07 (2015) 025 [arXiv:1502.03076] [INSPIRE]. · Zbl 1388.83352
[30] H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS(TASI2017)008 [arXiv:1805.09331] [INSPIRE].
[31] P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
[32] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, An entropy current in superspace, JHEP01 (2019) 061 [arXiv:1803.07070] [INSPIRE]. · Zbl 1409.81152
[33] F.M. Haehl, R. Loganayagam and M. Rangamani, Inflow mechanism for hydrodynamic entropy, Phys. Rev. Lett.121 (2018) 051602 [arXiv:1803.08490] [INSPIRE]. · Zbl 1402.83021
[34] X. Chen-Lin, L.V. Delacrétaz and S.A. Hartnoll, Theory of diffusive fluctuations, Phys. Rev. Lett.122 (2019) 091602 [arXiv:1811.12540] [INSPIRE].
[35] P. Kovtun, Fluctuation bounds on charge and heat diffusion, J. Phys.A 48 (2015) 265002 [arXiv:1407.0690] [INSPIRE]. · Zbl 1359.81182
[36] C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP03 (2003) 046 [hep-th/0212072] [INSPIRE].
[37] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [INSPIRE]. · Zbl 1228.81244
[38] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
[39] B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. Proc. Suppl.192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
[40] M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, The gravity dual of real-time CFT at finite temperature, JHEP11 (2018) 129 [arXiv:1808.10306] [INSPIRE]. · Zbl 1404.83039
[41] J. de Boer, M.P. Heller and N. Pinzani-Fokeeva, Effective actions for relativistic fluids from holography, JHEP08 (2015) 086 [arXiv:1504.07616] [INSPIRE]. · Zbl 1388.83360
[42] M. Crossley, P. Glorioso, H. Liu and Y. Wang, Off-shell hydrodynamics from holography, JHEP02 (2016) 124 [arXiv:1504.07611] [INSPIRE]. · Zbl 1388.83344
[43] D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys.13 (2011) 075010 [arXiv:1009.3094] [INSPIRE]. · Zbl 1448.81438
[44] I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP06 (2011) 031 [arXiv:1010.1264] [INSPIRE]. · Zbl 1298.81181
[45] T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP08 (2011) 051 [arXiv:1010.4036] [INSPIRE]. · Zbl 1298.81173
[46] J. de Boer, M.P. Heller and N. Pinzani-Fokeeva, Testing the membrane paradigm with holography, Phys. Rev.D 91 (2015) 026006 [arXiv:1405.4243] [INSPIRE].
[47] P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
[48] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE]. · Zbl 1407.82005
[49] H. Liu and J. Sonner, Holographic systems far from equilibrium: a review, arXiv:1810.02367 [INSPIRE].
[50] P. Gao, P. Glorioso and H. Liu, Ghostbusters: unitarity and causality of non-equilibrium effective field theories, arXiv:1803.10778 [INSPIRE]. · Zbl 1435.81216
[51] M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav.26 (2009) 224003 [arXiv:0905.4352] [INSPIRE]. · Zbl 1181.83005
[52] W. Israel, Thermo-field dynamics of black holes, Phys. Lett.A 57 (1976) 107.
[53] V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev.D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].
[54] G.T. Horowitz and D. Marolf, A new approach to string cosmology, JHEP07 (1998) 014 [hep-th/9805207] [INSPIRE]. · Zbl 0951.83036
[55] B.G. Carneiro da Cunha, Inflation and holography in string theory, Phys. Rev.D 65 (2002) 026001 [hep-th/0105219] [INSPIRE].
[56] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].
[57] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in Anti-de Sitter space-time, Phys. Rev.D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].
[58] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE].
[59] Y. Satoh and J. Troost, On time dependent AdS/CFT, JHEP01 (2003) 027 [hep-th/0212089] [INSPIRE]. · Zbl 1226.81226
[60] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev.D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].
[61] D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP05 (2005) 042 [hep-th/0412032] [INSPIRE].
[62] A. Lawrence and A. Sever, Holography and renormalization in Lorentzian signature, JHEP10 (2006) 013 [hep-th/0606022] [INSPIRE].
[63] J.B. Hartle and S.W. Hawking, Wave function of the Universe, Phys. Rev.D 28 (1983) 2960. · Zbl 1370.83118
[64] J. Feldbrugge, J.-L. Lehners and N. Turok, Lorentzian quantum cosmology, Phys. Rev.D 95 (2017) 103508 [arXiv:1703.02076] [INSPIRE].
[65] J. Feldbrugge, J.-L. Lehners and N. Turok, No smooth beginning for spacetime, Phys. Rev. Lett.119 (2017) 171301 [arXiv:1705.00192] [INSPIRE].
[66] A. Vilenkin, Creation of Universes from Nothing, Phys. Lett.B 117 (1982) 25.
[67] A. Vilenkin, The birth of inflationary universes, Phys. Rev.D 27 (1983) 2848 [INSPIRE].
[68] J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev.D 28 (1983) 2960 [INSPIRE]. · Zbl 1370.83118
[69] S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz ed., Cambridge University Press, Cambridge U.K. (2012), arXiv:1106.4324 [INSPIRE]. · Zbl 1269.83006
[70] S. Bhattacharyya et al., Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP12 (2008) 116 [arXiv:0809.4272] [INSPIRE]. · Zbl 1329.83103
[71] M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP02 (2016) 171 [arXiv:1512.07850] [INSPIRE]. · Zbl 1388.83188
[72] A. Christodoulou and K. Skenderis, Holographic construction of excited CFT States, JHEP04 (2016) 096 [arXiv:1602.02039] [INSPIRE]. · Zbl 1388.83208
[73] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP05 (2014) 147 [arXiv:1105.3733] [INSPIRE].
[74] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE].
[75] P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev.D 78 (2008) 066009 [arXiv:0806.0110] [INSPIRE].
[76] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP03 (2011) 141 [arXiv:1006.1902] [INSPIRE]. · Zbl 1301.81165
[77] R.-G. Cai, L. Li and Y.-L. Zhang, Non-relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface, JHEP07 (2011) 027 [arXiv:1104.3281] [INSPIRE]. · Zbl 1298.83010
[78] D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP12 (2011) 090 [arXiv:1106.2577] [INSPIRE]. · Zbl 1306.81147
[79] X. Bai, Y.-P. Hu, B.-H. Lee and Y.-L. Zhang, Holographic charged fluid with anomalous current at finite cutoff surface in Einstein-Maxwell gravity, JHEP11 (2012) 054 [arXiv:1207.5309] [INSPIRE].
[80] R. Emparan, V.E. Hubeny and M. Rangamani, Effective hydrodynamics of black D3-branes, JHEP06 (2013) 035 [arXiv:1303.3563] [INSPIRE]. · Zbl 1342.83151
[81] N. Pinzani-Fokeeva and M. Taylor, Towards a general fluid/gravity correspondence, Phys. Rev.D 91 (2015) 044001 [arXiv:1401.5975] [INSPIRE].
[82] T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP06 (2011) 012 [arXiv:1001.5049] [INSPIRE]. · Zbl 1298.81174
[83] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE].
[84] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
[85] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[86] U. Moitra, S.P. Trivedi and V. Vishal, Near-extremal near-horizons, arXiv:1808.08239 [INSPIRE]. · Zbl 1418.83028
[87] A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS2/nCFT1correspondence, JHEP10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
[88] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388
[89] M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP10 (2018) 127 [arXiv:1801.00010] [INSPIRE]. · Zbl 1402.81163
[90] F.M. Haehl and M. Rozali, Effective field theory for chaotic CFTs, JHEP10 (2018) 118 [arXiv:1808.02898] [INSPIRE]. · Zbl 1402.81223
[91] J. Cotler and K. Jensen, A theory of reparameterizations for AdS3gravity, JHEP02 (2019) 079 [arXiv:1808.03263] [INSPIRE]. · Zbl 1411.83079
[92] M.P. Heller, Holography, hydrodynamization and heavy-ion collisions, Acta Phys. Polon.B 47 (2016) 2581 [arXiv:1610.02023] [INSPIRE]. · Zbl 1371.83085
[93] B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP06 (2018) 059 [arXiv:1803.08058] [INSPIRE]. · Zbl 1395.83067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.