×

Holographic dissipation from the symplectic current. (English) Zbl 1534.83023

Summary: We develop analytic techniques to construct the leading dissipative terms in a derivative expansion of holographic fluids. Our basic ingredient is the Crnkovic-Witten symplectic current of classical gravity which we use to extract the dissipative transport coefficients of holographic fluids, assuming knowledge of the thermodynamics and the near horizon geometries of the bulk black hole geometries. We apply our techniques to non-conformal neutral fluids to reproduce previous results on the shear viscosity and generalise a known expression for the bulk viscosity.

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T28 Thermal quantum field theory

References:

[1] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE]. · Zbl 1407.82005
[2] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A, 45 (2012) · Zbl 1348.83039 · doi:10.1088/1751-8113/45/47/473001
[3] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[4] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[5] Hartnoll, SA; Herzog, CP; Horowitz, GT, Building a holographic superconductor, Phys. Rev. Lett., 101 (2008) · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[6] Gubser, SS, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.065034
[7] Gubser, SS, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.191601
[8] Nakamura, S.; Ooguri, H.; Park, C-S, Gravity dual of spatially modulated phase, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.044018
[9] Donos, A.; Gauntlett, JP, Holographic striped phases, JHEP, 08, 140 (2011) · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[10] Horowitz, GT; Santos, JE; Tong, D., Optical conductivity with holographic lattices, JHEP, 07, 168 (2012) · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[11] Donos, A.; Gauntlett, JP, Holographic Q-lattices, JHEP, 04, 040 (2014) · doi:10.1007/JHEP04(2014)040
[12] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, JHEP, 05, 101 (2014) · doi:10.1007/JHEP05(2014)101
[13] Donos, A.; Gauntlett, JP, The thermoelectric properties of inhomogeneous holographic lattices, JHEP, 01, 035 (2015) · doi:10.1007/JHEP01(2015)035
[14] Donos, A.; Kailidis, P.; Pantelidou, C., Dissipation in holographic superfluids, JHEP, 09, 134 (2021) · doi:10.1007/JHEP09(2021)134
[15] Ammon, M.; Arean, D.; Baggioli, M.; Gray, S.; Grieninger, S., Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography, JHEP, 03, 015 (2022) · Zbl 1522.83271 · doi:10.1007/JHEP03(2022)015
[16] Heller, MP; Janik, RA; Witaszczyk, P., Hydrodynamic gradient expansion in gauge theory plasmas, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.211602
[17] Heller, MP; Spalinski, M., Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.072501
[18] Withers, B., Short-lived modes from hydrodynamic dispersion relations, JHEP, 06, 059 (2018) · Zbl 1395.83067 · doi:10.1007/JHEP06(2018)059
[19] Grozdanov, S.; Kovtun, PK; Starinets, AO; Tadić, P., Convergence of the gradient expansion in hydrodynamics, Phys. Rev. Lett., 122 (2019) · Zbl 1429.83090 · doi:10.1103/PhysRevLett.122.251601
[20] Grozdanov, S.; Kovtun, PK; Starinets, AO; Tadić, P., The complex life of hydrodynamic modes, JHEP, 11, 097 (2019) · Zbl 1429.83090 · doi:10.1007/JHEP11(2019)097
[21] Son, DT; Starinets, AO, Viscosity, black holes, and quantum field theory, Ann. Rev. Nucl. Part. Sci., 57, 95 (2007) · doi:10.1146/annurev.nucl.57.090506.123120
[22] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045 (2008) · doi:10.1088/1126-6708/2008/02/045
[23] Haack, M.; Yarom, A., Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP, 10, 063 (2008) · Zbl 1245.81172 · doi:10.1088/1126-6708/2008/10/063
[24] Erdmenger, J.; Haack, M.; Kaminski, M.; Yarom, A., Fluid dynamics of R-charged black holes, JHEP, 01, 055 (2009) · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[25] Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Dutta, S.; Loganayagam, R.; Surowka, P., Hydrodynamics from charged black branes, JHEP, 01, 094 (2011) · Zbl 1214.83014 · doi:10.1007/JHEP01(2011)094
[26] Iqbal, N.; Liu, H., Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.025023
[27] Donos, A.; Gauntlett, JP, Thermoelectric DC conductivities from black hole horizons, JHEP, 11, 081 (2014) · doi:10.1007/JHEP11(2014)081
[28] Donos, A.; Gauntlett, JP, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D, 92 (2015) · Zbl 1388.83379 · doi:10.1103/PhysRevD.92.121901
[29] Donos, A.; Gauntlett, JP; Griffin, T.; Melgar, L., DC conductivity of magnetised holographic matter, JHEP, 01, 113 (2016) · Zbl 1388.83345 · doi:10.1007/JHEP01(2016)113
[30] Donos, A.; Gauntlett, JP; Griffin, T.; Melgar, L., DC conductivity and higher derivative gravity, Class. Quant. Grav., 34 (2017) · Zbl 1367.83072 · doi:10.1088/1361-6382/aa744a
[31] Eling, C.; Oz, Y., A novel formula for bulk viscosity from the null horizon focusing equation, JHEP, 06, 007 (2011) · Zbl 1298.81382 · doi:10.1007/JHEP06(2011)007
[32] Eling, C.; Fouxon, I.; Oz, Y., The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B, 680, 496 (2009) · doi:10.1016/j.physletb.2009.09.028
[33] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, Print-86-1309 (1986). · Zbl 0966.81533
[34] Grant, L.; Maoz, L.; Marsano, J.; Papadodimas, K.; Rychkov, VS, Minisuperspace quantization of ‘bubbling AdS’ and free fermion droplets, JHEP, 08, 025 (2005) · doi:10.1088/1126-6708/2005/08/025
[35] Maoz, L.; Rychkov, VS, Geometry quantization from supergravity: the case of ‘bubbling AdS’, JHEP, 08, 096 (2005) · doi:10.1088/1126-6708/2005/08/096
[36] Donos, A.; Jevicki, A., Dynamics of chiral primaries in AdS_3× S^3× T^4, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.085010
[37] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[38] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[39] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004 (2005) · doi:10.1088/1126-6708/2005/08/004
[40] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[41] Donos, A.; Gauntlett, JP, On the thermodynamics of periodic AdS black branes, JHEP, 10, 038 (2013) · Zbl 1342.83360 · doi:10.1007/JHEP10(2013)038
[42] Donos, A.; Pantelidou, C., Higgs/amplitude mode dynamics from holography, JHEP, 08, 246 (2022) · Zbl 1522.81426 · doi:10.1007/JHEP08(2022)246
[43] Herzog, CP; Lisker, N.; Surowka, P.; Yarom, A., Transport in holographic superfluids, JHEP, 08, 052 (2011) · Zbl 1298.81299 · doi:10.1007/JHEP08(2011)052
[44] Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S., Dissipative superfluid dynamics from gravity, JHEP, 04, 125 (2011) · doi:10.1007/JHEP04(2011)125
[45] Buchel, A.; Pagnutti, C., Transport at criticality, Nucl. Phys. B, 834, 222 (2010) · Zbl 1204.81122 · doi:10.1016/j.nuclphysb.2010.03.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.