×

(Non)renormalization of anomalous conductivities and holography. (English) Zbl 1333.83187

Summary: The chiral magnetic and the chiral vortical effects are recently discovered phenomena arising from chiral gauge and gravitational anomalies that lead to generation of electric currents in presence of magnetic field or vorticity. The magnitude of these effects is determined by the anomalous conductivities. These conductivities can be calculated by the linear response theory, and in the strong coupling limit this calculation can be carried out by the holographic techniques. Earlier calculations in case of conformal field theories indicate non-renormalization of these conductivities where the holographic calculation agrees with the free field limit. We extend this holographic study to non-conformal theories exhibiting mass-gap and confinement-deconfinement type transitions in a holographic model based on the analytic black hole solution of C. J. Gao and S. N. Zhang [“A universe dominated by dilaton field”, Preprint, arXiv:astro-ph/0605682]. We show that radiative corrections are also absent in these non-conformal theories confirming indirect arguments of K. Jensen et al. [“Chiral conductivities and effective field theory”, ibid. 2013, No. 10, Paper No. 186 (2013; doi:10.1007/JHEP10(2013)186)] in a direct and non-trivial fashion. There are various indications in field theory that such radiative corrections should arise when contribution of dynamical gluon fields to the chiral anomaly is present. Motivated by this, we seek for such corrections in the holographic picture and argue that such corrections indeed arise through mixing of the background and its fluctuations with the axion and the one-form fields that couple to the flavor and probe gauge branes through the Wess-Zumino terms. These corrections are non-vanishing when the flavor to color ratio Nf/Ncis finite, therefore they are only visible in the Veneziano limit at large \(N_c\).

MSC:

83E30 String and superstring theories in gravitational theory
83C57 Black holes

References:

[1] D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP-violation’, Nucl. Phys.A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE]. · doi:10.1016/j.nuclphysa.2008.02.298
[2] K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev.D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
[3] D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett.103 (2009) 191601 [arXiv:0906.5044] [INSPIRE]. · doi:10.1103/PhysRevLett.103.191601
[4] S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE]. · doi:10.1103/PhysRev.177.2426
[5] J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ-model, Nuovo Cim.A 60 (1969) 47 [INSPIRE]. · doi:10.1007/BF02823296
[6] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.B 155 (1985) 36 [INSPIRE]. · doi:10.1016/0370-2693(85)91028-7
[7] P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev.D 37 (1988) 1020 [INSPIRE].
[8] P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev.D 36 (1987) 581 [INSPIRE].
[9] Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP03 (2011) 023 [arXiv:1011.5107] [INSPIRE]. · Zbl 1301.81257 · doi:10.1007/JHEP03(2011)023
[10] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP01 (2009) 055 [arXiv:0809.2488] [INSPIRE]. · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[11] N. Banerjee et al., Hydrodynamics from charged black branes, JHEP01 (2011) 094 [arXiv:0809.2596] [INSPIRE]. · Zbl 1214.83014 · doi:10.1007/JHEP01(2011)094
[12] STAR collaboration, B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett.103 (2009) 251601 [arXiv:0909.1739] [INSPIRE]. · doi:10.1103/PhysRevLett.103.251601
[13] STAR collaboration, S.A. Voloshin, Probe for the strong parity violation effects at RHIC with three particle correlations, Indian J. Phys.85 (2011) 1103 [arXiv:0806.0029] [INSPIRE]. · doi:10.1007/s12648-011-0137-0
[14] L. McLerran and V. Skokov, Comments about the electromagnetic field in heavy-ion collisions, arXiv:1305.0774 [INSPIRE].
[15] K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous transport from Kubo formulae, Lect. Notes Phys.871 (2013) 433 [arXiv:1207.5808] [INSPIRE]. · doi:10.1007/978-3-642-37305-3_17
[16] M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev.D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].
[17] G.M. Newman and D.T. Son, Response of strongly-interacting matter to magnetic field: some exact results, Phys. Rev.D 73 (2006) 045006 [hep-ph/0510049] [INSPIRE].
[18] D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev.D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].
[19] K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev.D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].
[20] N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP09 (2012) 046 [arXiv:1203.3544] [INSPIRE]. · Zbl 1397.82026 · doi:10.1007/JHEP09(2012)046
[21] V.P. Nair, R. Ray and S. Roy, Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev.D 86 (2012) 025012 [arXiv:1112.4022] [INSPIRE].
[22] A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett.B 697 (2011) 404 [arXiv:1010.1550] [INSPIRE].
[23] A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, Phys. Rev.D 83 (2011) 105025 [arXiv:1012.1958] [INSPIRE].
[24] K. Fukushima and M. Ruggieri, Dielectric correction to the chiral magnetic effect, Phys. Rev.D 82 (2010) 054001 [arXiv:1004.2769] [INSPIRE].
[25] E.V. Gorbar, V.A. Miransky, I.A. Shovkovy and X. Wang, Radiative corrections to chiral separation effect in QED, Phys. Rev.D 88 (2013) 025025 [arXiv:1304.4606] [INSPIRE].
[26] A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys. Rev. Lett.107 (2011) 031601 [arXiv:1105.0385] [INSPIRE]. · doi:10.1103/PhysRevLett.107.031601
[27] A. Yamamoto, Lattice study of the chiral magnetic effect in a chirally imbalanced matter, Phys. Rev.D 84 (2011) 114504 [arXiv:1111.4681] [INSPIRE].
[28] K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP10 (2013) 186 [arXiv:1307.3234] [INSPIRE]. · Zbl 1342.83382 · doi:10.1007/JHEP10(2013)186
[29] N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, Constraints on anomalous fluid in arbitrary dimensions, JHEP03 (2013) 048 [arXiv:1206.6499] [INSPIRE]. · doi:10.1007/JHEP03(2013)048
[30] M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP03 (2004) 035 [hep-ph/0311100] [INSPIRE]. · doi:10.1088/1126-6708/2004/03/035
[31] A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark triangles, Phys. Lett.B 569 (2003) 187 [hep-ph/0212231] [INSPIRE]. · Zbl 1058.81761 · doi:10.1016/j.physletb.2003.07.038
[32] A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev.D 67 (2003) 073006 [Erratum ibid.D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
[33] P.V. Buividovich, Anomalous transport with overlap fermions, Nucl. Phys.A 925 (2014) 218 [arXiv:1312.1843] [INSPIRE]. · doi:10.1016/j.nuclphysa.2014.02.022
[34] K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP02 (2013) 088 [arXiv:1207.5824] [INSPIRE]. · Zbl 1342.83245 · doi:10.1007/JHEP02(2013)088
[35] K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP05 (2014) 134 [arXiv:1310.7024] [INSPIRE]. · doi:10.1007/JHEP05(2014)134
[36] S. Golkar and D.T. Son, Non-renormalization of the chiral vortical effect coefficient, arXiv:1207.5806 [INSPIRE]. · Zbl 1388.83348
[37] D.-F. Hou, H. Liu and H.-C. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma, Phys. Rev.D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].
[38] V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev.D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].
[39] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[40] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[41] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[42] A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic anomalous conductivities and the chiral magnetic effect, JHEP02 (2011) 110 [arXiv:1005.2587] [INSPIRE]. · Zbl 1294.81281 · doi:10.1007/JHEP02(2011)110
[43] I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in holography, JHEP05 (2011) 081 [arXiv:1102.4577] [INSPIRE]. · Zbl 1296.81122 · doi:10.1007/JHEP05(2011)081
[44] K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett.107 (2011) 021601 [arXiv:1103.5006] [INSPIRE]. · doi:10.1103/PhysRevLett.107.021601
[45] K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP09 (2011) 121 [arXiv:1107.0368] [INSPIRE]. · Zbl 1301.81303 · doi:10.1007/JHEP09(2011)121
[46] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys.B 721 (2005) 79 [hep-ph/0501218] [INSPIRE]. · Zbl 1128.81310 · doi:10.1016/j.nuclphysb.2005.05.009
[47] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev.D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
[48] A. Gorsky, P.N. Kopnin and A.V. Zayakin, On the chiral magnetic effect in soft-wall AdS/QCD, Phys. Rev.D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].
[49] C.J. Gao and S.N. Zhang, A universe dominated by dilaton field, astro-ph/0605682 [INSPIRE].
[50] T. Kalaydzhyan, On the temperature dependence of the chiral vortical effects, Phys. Rev.D 89 (2014) 105012 [arXiv:1403.1256] [INSPIRE].
[51] K. Landsteiner and L. Melgar, Holographic flow of anomalous transport coefficients, JHEP10 (2012) 131 [arXiv:1206.4440] [INSPIRE]. · doi:10.1007/JHEP10(2012)131
[52] I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev.D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].
[53] U. Gürsoy, S.A. Hartnoll and R. Portugues, The chiral anomaly from M-theory, Phys. Rev.D 69 (2004) 086003 [hep-th/0311088] [INSPIRE].
[54] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys.B 787 (2007) 98 [hep-th/0702155] [INSPIRE]. · doi:10.1016/j.nuclphysb.2007.07.009
[55] T. Alho et al., A holographic model for QCD in the Veneziano limit at finite temperature and density, JHEP04 (2014) 124 [arXiv:1312.5199] [INSPIRE]. · doi:10.1007/JHEP04(2014)124
[56] P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett.B 115 (1982) 197 [INSPIRE]. · doi:10.1016/0370-2693(82)90643-8
[57] S.H. Hendi, A. Sheykhi and M.H. Dehghani, Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity, Eur. Phys. J.C 70 (2010) 703 [arXiv:1002.0202] [INSPIRE]. · doi:10.1140/epjc/s10052-010-1483-3
[58] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP05 (2009) 033 [arXiv:0812.0792] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/033
[59] U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, JHEP01 (2011) 086 [arXiv:1007.0500] [INSPIRE]. · Zbl 1214.83002 · doi:10.1007/JHEP01(2011)086
[60] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE]. · Zbl 1057.81550
[61] B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP01 (2012) 089 [arXiv:1110.2320] [INSPIRE]. · Zbl 1306.81104 · doi:10.1007/JHEP01(2012)089
[62] M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic operator mixing and quasinormal modes on the brane, JHEP02 (2010) 021 [arXiv:0911.3610] [INSPIRE]. · Zbl 1270.81178 · doi:10.1007/JHEP02(2010)021
[63] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE]. · Zbl 0946.83013 · doi:10.1007/s002200050764
[64] M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, JHEP03 (2012) 002 [arXiv:1112.1261] [INSPIRE]. · Zbl 1309.81277 · doi:10.1007/JHEP03(2012)002
[65] U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP02 (2008) 032 [arXiv:0707.1324] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/032
[66] F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP10 (2005) 012 [hep-th/0505140] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/012
[67] C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys.2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE]. · Zbl 1216.81145 · doi:10.1155/2010/196714
[68] F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, Holographic duals of quark gluon plasmas with unquenched flavors, Commun. Theor. Phys.57 (2012) 364 [arXiv:1110.1744] [INSPIRE]. · Zbl 1247.83072 · doi:10.1088/0253-6102/57/3/07
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.