×

Higgs/amplitude mode dynamics from holography. (English) Zbl 1522.81426

Summary: Second order phase transitions are universally driven by an order parameter which becomes trivial at the critical point. At the same time, collective excitations which involve the amplitude of the order parameter develop a gap which smoothly closes to zero at criticality. We develop analytical techniques to study this “Higgs” mode in holographic systems which undergo a continuous phase transition at finite temperature and chemical potential. This allows us to study the linear response of the system at energy scales of the order of the gap. We express the Green’s functions of scalar operators in terms of thermodynamic quantities and a single transport coefficient which we fix in terms of black hole horizon data.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T28 Thermal quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[2] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE]. · Zbl 1407.82005
[3] Pekker, D.; Varma, CM, Amplitude/Higgs Modes in Condensed Matter Physics, Ann. Rev. Condensed Matter Phys., 6, 269 (2015) · doi:10.1146/annurev-conmatphys-031214-014350
[4] P.C. Hohenberg and B.I. Halperin, Theory of Dynamic Critical Phenomena, Rev. Mod. Phys.49 (1977) 435 [INSPIRE].
[5] Sherman, D., The Higgs Mode in Disordered Superconductors Close to a Quantum Phase Transition, Nature Phys., 11, 188 (2015) · doi:10.1038/nphys3227
[6] Endres, M., The ‘Higgs’ Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition, Nature, 487, 454 (2012) · doi:10.1038/nature11255
[7] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. · Zbl 1404.82086
[8] S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
[9] S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett.101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].
[10] Donos, A.; Gauntlett, JP, Holographic striped phases, JHEP, 08, 140 (2011) · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[11] Donos, A.; Gauntlett, JP; Pantelidou, C., Spatially modulated instabilities of magnetic black branes, JHEP, 01, 061 (2012) · Zbl 1306.81218 · doi:10.1007/JHEP01(2012)061
[12] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
[13] Amado, I.; Kaminski, M.; Landsteiner, K., Hydrodynamics of Holographic Superconductors, JHEP, 05, 021 (2009) · doi:10.1088/1126-6708/2009/05/021
[14] M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett.110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].
[15] C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].
[16] Donos, A.; Kailidis, P.; Pantelidou, C., Dissipation in holographic superfluids, JHEP, 09, 134 (2021) · doi:10.1007/JHEP09(2021)134
[17] Khalatnikov, I.; Lebedev, V., Relativistic hydrodynamics of a superfluid liquid, Phys. Lett. A, 91, 70 (1982) · doi:10.1016/0375-9601(82)90268-7
[18] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, Princeton Print-86-1309, (1986). · Zbl 0966.81533
[19] Andrade, T.; Baggioli, M.; Krikun, A.; Poovuttikul, N., Pinning of longitudinal phonons in holographic spontaneous helices, JHEP, 02, 085 (2018) · Zbl 1387.81298 · doi:10.1007/JHEP02(2018)085
[20] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Gapless and gapped holographic phonons, JHEP, 01, 058 (2020) · doi:10.1007/JHEP01(2020)058
[21] M. Baggioli, K.-Y. Kim, L. Li and W.-J. Li, Holographic Axion Model: a simple gravitational tool for quantum matter, Sci. China Phys. Mech. Astron.64 (2021) 270001 [arXiv:2101.01892] [INSPIRE].
[22] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[23] Donos, A.; Gauntlett, JP, Holographic helical superconductors, JHEP, 12, 091 (2011) · Zbl 1306.81094 · doi:10.1007/JHEP12(2011)091
[24] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].
[25] Donos, A., Striped phases from holography, JHEP, 05, 059 (2013) · doi:10.1007/JHEP05(2013)059
[26] B. Withers, Black branes dual to striped phases, Class. Quant. Grav.30 (2013) 155025 [arXiv:1304.0129] [INSPIRE]. · Zbl 1273.83114
[27] Withers, B., Holographic Checkerboards, JHEP, 09, 102 (2014) · Zbl 1333.83115 · doi:10.1007/JHEP09(2014)102
[28] Donos, A.; Gauntlett, JP, Minimally packed phases in holography, JHEP, 03, 148 (2016) · Zbl 1388.83048 · doi:10.1007/JHEP03(2016)148
[29] E. Grossi, A. Soloviev, D. Teaney and F. Yan, Soft pions and transport near the chiral critical point, Phys. Rev. D104 (2021) 034025 [arXiv:2101.10847] [INSPIRE].
[30] K. Rajagopal and F. Wilczek, Static and dynamic critical phenomena at a second order QCD phase transition, Nucl. Phys. B399 (1993) 395 [hep-ph/9210253] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.