×

Viscoelastic hydrodynamics and holography. (English) Zbl 1434.83119

Summary: We formulate the theory of nonlinear viscoelastic hydrodynamics of anisotropic crystals in terms of dynamical Goldstone scalars of spontaneously broken translational symmetries, under the assumption of homogeneous lattices and absence of plastic deformations. We reformulate classical elasticity effective field theory using surface calculus in which the Goldstone scalars naturally define the position of higher-dimensional crystal cores, covering both elastic and smectic crystal phases. We systematically incorporate all dissipative effects in viscoelastic hydrodynamics at first order in a long-wavelength expansion and study the resulting rheology equations. In the process, we find the necessary conditions for equilibrium states of viscoelastic materials. In the linear regime and for isotropic crystals, the theory includes the description of Kelvin-Voigt materials. Furthermore, we provide an entirely equivalent description of viscoelastic hydrodynamics as a novel theory of higher-form superfluids in arbitrary dimensions where the Goldstone scalars of partially broken generalised global symmetries play an essential role. An exact map between the two formulations of viscoelastic hydrodynamics is given. Finally, we study holographic models dual to both these formulations and map them one-to-one via a careful analysis of boundary conditions. We propose a new simple holographic model of viscoelastic hydrodynamics by adopting an alternative quantisation for the scalar fields.

MSC:

83E05 Geometrodynamics and the holographic principle
81R40 Symmetry breaking in quantum theory
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

References:

[1] Gutierrez-Lemini, Danton, Isothermal Boundary-Value Problems, Engineering Viscoelasticity, 219-238 (2013), Boston, MA: Springer US, Boston, MA
[2] R. Christensen, Theory of Viscoelasticity, second edition, Dover Civil and Mechanical Engineering, Dover Publications (2013).
[3] Eckart, C., The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity, Phys. Rev., 73, 373 (1948) · Zbl 0032.22201 · doi:10.1103/PhysRev.73.373
[4] Azeyanagi, T.; Fukuma, M.; Kawai, H.; Yoshida, K., Universal description of viscoelasticity with foliation preserving diffeomorphisms, Phys. Lett., B 681, 290 (2009) · doi:10.1016/j.physletb.2009.10.027
[5] Azeyanagi, Tatsuo; Fukuma, Masafumi; Kawai, Hikaru; Yoshida, Kentaroh, Universal description of viscoelasticity with foliation preserving diffeomorphisms, Journal of Physics: Conference Series, 462, 012013 (2013)
[6] M. Fukuma and Y. Sakatani, Entropic formulation of relativistic continuum mechanics, Phys. Rev.E 84 (2011) 026315 [arXiv:1102.1557] [INSPIRE].
[7] M. Fukuma and Y. Sakatani, Relativistic viscoelastic fluid mechanics, Phys. Rev.E 84 (2011) 026316 [arXiv:1104.1416] [INSPIRE].
[8] Fukuma, M.; Sakatani, Y., Conformal higher-order viscoelastic fluid mechanics, JHEP, 06, 102 (2012) · doi:10.1007/JHEP06(2012)102
[9] L. Landau and E. Lifshitz, Fluid Mechanics. Course of Theoretical Physics. Volume 6, Elsevier Science (2013).
[10] L. Landau, E. Lifshitz, A. Kosevich, J. Sykes, L. Pitaevskii and W. Reid, Theory of Elasticity. Course of theoretical physics. Volume 7, Elsevier Science (1986).
[11] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995).
[12] P. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics, Clarendon Press (1995).
[13] Martin, Pc; Parodi, O.; Pershan, Ps, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev., A 6, 2401 (1972) · doi:10.1103/PhysRevA.6.2401
[14] F. Jähnig and H. Schmidt, Hydrodynamics of liquid crystals, Ann. Phys.71 (1972) 129.
[15] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys., A 45, 473001 (2012) · Zbl 1348.83039
[16] Haehl, Fm; Loganayagam, R.; Rangamani, M., The eightfold way to dissipation, Phys. Rev. Lett., 114, 201601 (2015) · Zbl 1388.81456 · doi:10.1103/PhysRevLett.114.201601
[17] Haehl, Fm; Loganayagam, R.; Rangamani, M., Adiabatic hydrodynamics: The eightfold way to dissipation, JHEP, 05, 060 (2015) · Zbl 1388.81456 · doi:10.1007/JHEP05(2015)060
[18] Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Jain, S.; Minwalla, S.; Sharma, T., Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP, 09, 046 (2012) · Zbl 1397.82026 · doi:10.1007/JHEP09(2012)046
[19] Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A., Towards hydrodynamics without an entropy current, Phys. Rev. Lett., 109, 101601 (2012) · doi:10.1103/PhysRevLett.109.101601
[20] H. Kleinert, Gauge Fields in Condensed Matter, World Scientific (1989). · Zbl 0785.53061
[21] Beekman, Aj, Dual gauge field theory of quantum liquid crystals in two dimensions, Phys. Rept., 683, 1 (2017) · Zbl 1366.82072 · doi:10.1016/j.physrep.2017.03.004
[22] Grozdanov, S.; Poovuttikul, N., Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev., D 97, 106005 (2018)
[23] D. Schubring, Dissipative String Fluids, Phys. Rev.D 91 (2015) 043518 [arXiv:1412.3135] [INSPIRE].
[24] S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev.D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].
[25] Armas, J.; Gath, J.; Jain, A.; Pedersen, Av, Dissipative hydrodynamics with higher-form symmetry, JHEP, 05, 192 (2018) · doi:10.1007/JHEP05(2018)192
[26] Armas, J.; Jain, A., Magnetohydrodynamics as superfluidity, Phys. Rev. Lett., 122, 141603 (2019) · doi:10.1103/PhysRevLett.122.141603
[27] J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, arXiv:1811.04913 [INSPIRE]. · Zbl 1434.83118
[28] P. Glorioso and D.T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].
[29] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE]. · Zbl 1384.83021
[30] L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett.120 (2018) 171602 [arXiv:1711.03100] [INSPIRE]. · Zbl 1384.83021
[31] Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R., Conformal solids and holography, JHEP, 12, 113 (2017) · Zbl 1383.81208 · doi:10.1007/JHEP12(2017)113
[32] Baggioli, M.; Buchel, A., Holographic Viscoelastic Hydrodynamics, JHEP, 03, 146 (2019) · Zbl 1414.81254
[33] T. Andrade, M. Baggioli and O. Pujolàs, Linear viscoelastic dynamics in holography, Phys. Rev.D 100 (2019) 106014 [arXiv:1903.02859] [INSPIRE].
[34] M. Ammon, M. Baggioli and A. Jiménez-Alba, A Unified Description of Translational Symmetry Breaking in Holography, JHEP09 (2019) 124 [arXiv:1904.05785] [INSPIRE]. · Zbl 1423.83067
[35] Ammon, M.; Baggioli, M.; Gray, S.; Grieninger, S., Longitudinal Sound and Diffusion in Holographic Massive Gravity, JHEP, 10, 064 (2019) · Zbl 1427.83052 · doi:10.1007/JHEP10(2019)064
[36] Baggioli, M.; Grieninger, S., Zoology of solid & fluid holography — Goldstone modes and phase relaxation, JHEP, 10, 235 (2019) · doi:10.1007/JHEP10(2019)235
[37] Baggioli, M.; Trachenko, K., Low frequency propagating shear waves in holographic liquids, JHEP, 03, 093 (2019) · Zbl 1414.83070 · doi:10.1007/JHEP03(2019)093
[38] M. Baggioli, V.V. Brazhkin, K. Trachenko and M. Vasin, Gapped momentum states, arXiv:1904.01419 [INSPIRE]. · Zbl 1497.82020
[39] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, JHEP, 05, 101 (2014) · doi:10.1007/JHEP05(2014)101
[40] Bardoux, Y.; Caldarelli, Mm; Charmousis, C., Shaping black holes with free fields, JHEP, 05, 054 (2012) · Zbl 1348.83043 · doi:10.1007/JHEP05(2012)054
[41] Donos, A.; Gauntlett, Jp, Holographic Q-lattices, JHEP, 04, 040 (2014) · doi:10.1007/JHEP04(2014)040
[42] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].
[43] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev.D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
[44] Blake, M., Momentum relaxation from the fluid/gravity correspondence, JHEP, 09, 010 (2015) · Zbl 1388.83185 · doi:10.1007/JHEP09(2015)010
[45] Bhattacharyya, S.; Loganayagam, R.; Minwalla, S.; Nampuri, S.; Trivedi, Sp; Wadia, Sr, Forced Fluid Dynamics from Gravity, JHEP, 02, 018 (2009) · Zbl 1245.83019 · doi:10.1088/1126-6708/2009/02/018
[46] Burikham, P.; Poovuttikul, N., Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev., D 94, 106001 (2016)
[47] Jain, A., Theory of non-Abelian superfluid dynamics, Phys. Rev., D 95, 121701 (2017)
[48] A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev.D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
[49] Beekman, Aj, Dual gauge field theory of quantum liquid crystals in two dimensions, Phys. Rept., 683, 1 (2017) · Zbl 1366.82072 · doi:10.1016/j.physrep.2017.03.004
[50] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev.B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
[51] M. Baggioli, U. Gran, A. Jiménez-Alba, M. Tornsö and T. Zingg, Holographic Plasmon Relaxation with and without Broken Translations, JHEP09 (2019) 013 [arXiv:1905.00804] [INSPIRE].
[52] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized Global Symmetries, JHEP, 02, 172 (2015) · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[53] Hernandez, J.; Kovtun, P., Relativistic magnetohydrodynamics, JHEP, 05, 001 (2017) · Zbl 1380.83108 · doi:10.1007/JHEP05(2017)001
[54] Hofman, Dm; Iqbal, N., Generalized global symmetries and holography, SciPost Phys., 4, 005 (2018) · doi:10.21468/SciPostPhys.4.1.005
[55] Grozdanov, S.; Poovuttikul, N., Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP, 04, 141 (2019) · doi:10.1007/JHEP04(2019)141
[56] Faulkner, T.; Iqbal, N., Friedel oscillations and horizon charge in 1D holographic liquids, JHEP, 07, 060 (2013) · doi:10.1007/JHEP07(2013)060
[57] Balasubramanian, V.; Kraus, P., A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys., 208, 413 (1999) · Zbl 0946.83013 · doi:10.1007/s002200050764
[58] Klebanov, Ir; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys., B 556, 89 (1999) · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[59] E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[60] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[61] Armas, J.; Tarrio, J., On actions for (entangling) surfaces and DCFTs, JHEP, 04, 100 (2018) · Zbl 1390.81405 · doi:10.1007/JHEP04(2018)100
[62] Gregory, R.; Laflamme, R., Black strings and p-branes are unstable, Phys. Rev. Lett., 70, 2837 (1993) · Zbl 1051.83544 · doi:10.1103/PhysRevLett.70.2837
[63] Musso, D., Simplest phonons and pseudo-phonons in field theory, Eur. Phys. J., C 79, 986 (2019) · doi:10.1140/epjc/s10052-019-7498-5
[64] D. Musso and D. Naegels, Phonon and Shifton from a Real Modulated Scalar, arXiv:1907.04069 [INSPIRE].
[65] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Universal relaxation in a holographic metallic density wave phase, Phys. Rev. Lett.123 (2019) 211602 [arXiv:1812.08118] [INSPIRE].
[66] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Diffusion and universal relaxation of holographic phonons, JHEP10 (2019) 068 [arXiv:1904.11445] [INSPIRE].
[67] Sonin, Eb; Vinen, Wf, The hydrodynamics of a two-dimensional hexatic phase, J. Phys. Condens. Matter, 10, 2191 (1998) · doi:10.1088/0953-8984/10/10/004
[68] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Effective holographic theory of charge density waves, Phys. Rev.D 97 (2018) 086017 [arXiv:1711.06610] [INSPIRE].
[69] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, DC resistivity of quantum critical, charge density wave states from gauge-gravity duality, Phys. Rev. Lett.120 (2018) 171603 [arXiv:1712.07994] [INSPIRE].
[70] S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev.D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].
[71] Wen, X-G, Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev., B 99, 205139 (2019) · doi:10.1103/PhysRevB.99.205139
[72] B. Carter, Brane dynamics for treatment of cosmic strings and vortons, in proceedings of the 2nd Mexican School on Gravitation and Mathematical Physics, Tlaxcala, Mexico, 1-7 December 1996, hep-th/9705172 [INSPIRE].
[73] A.J. Speranza, Geometrical tools for embedding fields, submanifolds and foliations, arXiv:1904.08012 [INSPIRE].
[74] Carter, B., Amalgamated Codazzi-Raychaudhuri identity for foliation, Contemp. Math., 203, 207 (1997) · doi:10.1090/conm/203/02558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.