×

Anisotropic meshing with time-stepping control for unsteady convection-dominated problems. (English) Zbl 1443.65205

Summary: In this work, we develop a new anisotropic space and time adaptive method for convection dominated problems with inner and boundary layers. A new route to construct a metric field directly at the nodes of the mesh is highlighted using the length distribution tensor and an edge based error analysis. A Streamline Upwind Petrov-Galerkin (SUPG) finite element method is employed to solve the unsteady convection-diffusion equation. The numerical experiments show that the use of both space and time adaptivity generates optimal time stepping, allows the recovery of the global convergence order of the numerical schemes, reduces the computational time and cost and produces accurate and oscillation free numerical solutions.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[2] Hughes, T. J.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Eng., 58, 3, 305-328 (1986) · Zbl 0622.76075
[3] Scovazzi, G., A discourse on Galilean invariance. SUPG stabilization, and the variational multiscale framework, Comput. Methods Appl. Mech. Eng., 196, 4-6, 1108-1132 (2007) · Zbl 1120.76333
[4] Harari, I.; Hughes, T., Stabilized finite element methods for steady advection-diffusion with production, Comput. Methods Appl. Mech. Eng., 115, 165-191 (1994)
[5] Harari, I.; Hughes, T. J., Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains, Comput. Methods Appl. Mech. Eng., 98, 3, 411-454 (1992) · Zbl 0762.76053
[6] Harari, I.; Hughes, T., Stabilized finite element methods for steady advection-diffusion with production, Comput. Methods Appl. Mech. Eng., 115, 165-191 (1994)
[7] Hughes, L. F.T.; Hulbert, G., A new finite element formulation for fluid dynamics: VIII. The Galerkin/least-squares method for the advection-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 173-189 (1989) · Zbl 0697.76100
[8] Franca, L.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Eng., 123, 229-308 (1995) · Zbl 1067.76567
[9] Franca, L.; Farhat, C.; Macedo, A.; Lesoinne, M., Residual-free bubbles for the Helmholtz equation, Int. J. Numer. Methods Eng., 40, 4003-4009 (1997) · Zbl 0897.73062
[10] Franca, L.; Farhat, C.; Lesoinne, M.; Russo, A., Unusual stabilized finite element methods and residual-free bubbles, Int. J. Numer. Methods Fluids, 27, 159-168 (1998) · Zbl 0904.76045
[11] Hachem, E.; Digonnet, H.; Massoni, E.; Coupez, T., Enriched finite element spaces for transient conduction heat transfer, Appl. Math. Comput., 217, 3929-3943 (2010) · Zbl 1206.65231
[12] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Eng., 190, 13-14, 1579-1599 (2000) · Zbl 0998.76047
[13] Kavetski, D.; Binning, P.; Sloan, S. W., Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow, Int. J. Numer. Methods Eng., 53, 6, 1301-1322 (2002) · Zbl 1073.76058
[14] Sloan, S. W.; Abbo, A. J., Biot consolidation analysis with automatic time stepping and error control Part 1: theory and implementation, Int. J. Numer. Anal. Methods Geomech., 23, 6, 467-492 (1999) · Zbl 0955.74067
[15] Feng, Y. T.; Peric, D., A time-adaptive space-time finite element method for incompressible Lagrangian flows with free surfaces: computational issues, Comput. Methods Appl. Mech. Eng., 190, 5-7, 499-518 (2000) · Zbl 0995.76046
[16] Chen, Z.; Feng, J., An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comput., 73, 247, 1167-1193 (2004) · Zbl 1052.65091
[17] Minkoff, S. E.; Kridler, N. M., A comparison of adaptive time stepping methods for coupled flow and deformation modeling, Appl. Math. Model., 30, 9, 993-1009 (2006) · Zbl 1197.76112
[18] Berrone, S.; Marro, M., Space-time adaptive simulations for unsteady Navier-Stokes problems, Comput. Fluids, 38, 6, 1132-1144 (2009) · Zbl 1242.76111
[19] Georgiev, K.; Kosturski, N.; Margenov, S.; Star, J., On adaptive time stepping for large-scale parabolic problems: computer simulation of heat and mass transfer in vacuum freeze-drying, J. Comput. Appl. Math., 226, 2, 268-274 (2009) · Zbl 1166.80001
[20] Minkoff, S. E.; Kridler, N. M., A comparison of adaptive time stepping methods for coupled flow and deformation modeling, Appl. Math. Model., 30, 993-1009 (2006) · Zbl 1197.76112
[21] Micheletti, S.; Perotto, S., Space-time adaptation simulation for purely diffusive problems in an anisotropic framework, Int. J. Numer. Anal. Model., 7, 1, 125-155 (2010) · Zbl 1499.65515
[22] Fidkowski, K. J.; Luo, Y., Output-based space-time mesh adaptation for the compressible Navier-Stokes equations, J. Comput. Phys., 230, 14, 5753-5773 (2011) · Zbl 1416.76211
[23] Zhang, Y.; Hou, Y.; Zuo, H., A posteriori error estimation and adaptive computation of conduction convection problems, Appl. Math. Model., 35, 2336-2347 (2011) · Zbl 1217.76040
[24] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72, 2, 449-466 (1987) · Zbl 0631.76085
[25] Selmin, V.; Formaggia, L., Simulation of hypersonic flows on unstructured grids, Int. J. Numer. Methods Eng., 34, 2, 569-606 (1992) · Zbl 0753.76122
[26] Lohner, R., Adaptive remeshing for transient problems, Comput. Methods Appl. Mech. Eng., 75, 13, 195-214 (1989) · Zbl 0689.68116
[27] Zienkiewicz, O. C.; Wu, J., Automatic directional refinement in adaptive analysis of compressible flows, Int. J. Numer. Methods Eng., 37, 13, 2189-2210 (1994) · Zbl 0810.76045
[28] Tam, A.; Ait-Ali-Yahia, D.; Robichaud, M.; Moore, M.; Kozel, V.; Habashi, W., Anisotropic mesh adaptation for 3D flows on structured and unstructured grids, Comput. Methods Appl. Mech. Eng., 189, 4, 1205-1230 (2000) · Zbl 1005.76061
[29] Pain, C.; Umpleby, A.; de Oliveira, C.; Goddard, A., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng., 190, 2930, 3771-3796 (2001) · Zbl 1008.76041
[30] Gruau, C.; Coupez, T., 3D Tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., 194, 4951-4976 (2005) · Zbl 1102.65122
[31] Frey, P.; Alauzet, F., Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Eng., 194, 5068-5082 (2005) · Zbl 1092.76054
[32] Kunert, G., An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numer. Math., 86, 3, 471-490 (2000) · Zbl 0965.65125
[33] Formaggia, L.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems, Appl. Numer. Math., 51, 4, 511-533 (2004) · Zbl 1107.65098
[34] Micheletti, S.; Perotto, S., Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator, Comput. Methods Appl. Mech. Eng., 195, 912, 799-835 (2006) · Zbl 1125.65099
[35] Picasso, M., Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives, Comput. Methods Appl. Mech. Eng., 196, 13, 14-23 (2006) · Zbl 1120.65336
[36] Hecht, F.; Kuate, R., An approximation of anisotropic metrics from higher order interpolation error for triangular mesh adaptation, J. Comput. Appl. Math., 258, 99-115 (2014), ISSN 0377-0427 · Zbl 1294.65106
[37] Formaggia, L.; Perotto, S., New anisotropic a priori error estimate, Numer. Math., 89, 641-667 (2001) · Zbl 0990.65125
[38] Huang, W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204, 2, 633-665 (2005) · Zbl 1067.65140
[39] Venditti, D.; Darmofal, D. L., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187, 1, 22-46 (2003) · Zbl 1047.76541
[40] Micheletti, S.; Perotto, S., Output functional control for nonlinear equations driven by anisotropic mesh adaption: the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2817-2854 (2008) · Zbl 1400.49037
[41] Alauzet, F.; Hassan, W.; Picasso, M., Goal oriented, anisotropic, a posteriori error estimates for the Laplace equation, (Numerical Mathematics and Advanced Applications 2009. Numerical Mathematics and Advanced Applications 2009, Berlin Heidelberg (2010), Springer), 47-58 · Zbl 1215.65167
[42] Peter, J.; Nguyen-Dinh, M.; Trontin, P., Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates with applications to Euler flows, Comput. Fluids, 66, 194-214 (2012)
[43] Coupez, T., Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, J. Comput. Phys., 230, 7, 2391-2405 (2011) · Zbl 1218.65139
[44] Coupez, T., A mesh improvement method for 3D automatic remeshing, (Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (1994), Pineridge Press), 615-626 · Zbl 0885.73077
[45] Li, X.; Shephard, M. S.; Beall, M. W., 3D anisotropic mesh adaptation by mesh modification, Comput. Methods Appl. Mech. Eng., 194, 4915-4950 (2005) · Zbl 1090.76060
[46] Shephard, M. S.; Flaherty, J. E.; Jansen, K. E.; Li, X.; Luo, X.; Chevaugeon, N.; Remacle, J. F.; Beall, M. W.; Obara, R. M., Adaptive mesh generation for curved-domains, Appl. Numer. Math., 52, 251-271 (2005) · Zbl 1062.65020
[47] Remacle, J. F.; Li, X.; Shephard, M. S.; Flaherty, J. E., Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, Int. J. Numer. Methods Eng., 52, 899-923 (2005) · Zbl 1078.76042
[49] Alauzet, F.; Frey, P.; George, P.-L.; Mohammadi, B., 3D transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations, J. Comput. Phys., 222, 592-623 (2007) · Zbl 1158.76388
[50] Gruau, C.; Coupez, T., 3D tetrahedral. Unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., 194, 4951-4976 (2005) · Zbl 1102.65122
[51] Formaggia, L.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems, Appl. Numer. Math., 51, 4, 511-533 (2004), ISSN 0168-9274 · Zbl 1107.65098
[52] Nguyen, H.; Gunzburger, M.; Ju, L.; Burkardt, J., Adaptive anisotropic meshing for steady convection-dominated problems, Comput. Methods Appl. Mech. Eng., 198, 37-40, 2964-2981 (2009) · Zbl 1229.76055
[53] Picasso, M.; Prachittham, V., An adaptive algorithm for the Crank-Nicolson scheme applied to a time-dependent convection-diffusion problem, J. Comput. Appl. Math., 233, 4, 1139-1154 (2009) · Zbl 1181.65113
[54] Volker, J.; Joachim, R., Adaptive time step control for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 199, 912, 514-524 (2010) · Zbl 1227.76048
[55] Kay, D.; Gresho, P.; Griffiths, D.; Silvester, D., Adaptive time-stepping for incompressible flow part II: Navier-Stokes equations, SIAM J. Sci. Comput., 32, 1, 111-128 (2010) · Zbl 1410.76293
[57] Hirthe, E.; Graf, T., Non-iterative adaptive time-stepping scheme with temporal truncation error control for simulating variable-density flow, Adv. Water Res., 49, 46-55 (2012)
[58] Alauzet, F.; Mehrenberger, M., P1-conservative solution interpolation on unstructured triangular meshes, Int. J. Numer. Methods Eng., 84, 13, 1552-1588 (2010) · Zbl 1202.76096
[59] Franca, L. P.; Frey, S. L.; Hughes, T. J., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 95, 2, 253-276 (1992) · Zbl 0759.76040
[60] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Eng., 156, 1-4, 185-210 (1998) · Zbl 0959.76040
[61] Codina, R., On stabilized finite element methods for linear systems of convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 188, 1-3, 61-82 (2000) · Zbl 0973.76041
[62] Franca, L.; Valentin, F., On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation, Comput. Methods Appl. Mech. Eng., 190, 13-14, 1785-1800 (2000) · Zbl 0976.76038
[63] Mitchell, A.; Griffiths, D., Generalised Galerkin methods for second order equations with significant first derivative terms, (Watson, G., Numerical Analysis. Numerical Analysis, Lecture Notes in Mathematics, vol. 630 (1978), Springer: Springer Berlin/Heidelberg), 90-104 · Zbl 0443.65082
[64] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Eng., 190, 3-4, 411-430 (2000) · Zbl 0973.76057
[65] Baptista, A. M.; Adams, E. E.; Gresho, P., Benchmarks for the Transport Equation: The Convection-Diffusion Forum and Beyond, vol. 47 (1995), American Geophysical Union
[66] Hachem, E.; Rivaux, B.; Klozcko, T.; Digonnet, H.; Coupez, T., Stabilized finite element method for incompressible flows with high Reynolds number, J. Comput. Phys., 229, 8643-8665 (2010) · Zbl 1282.76120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.