×

Stabilized finite element method for incompressible flows with high Reynolds number. (English) Zbl 1282.76120

Summary: We discuss the exhaustive use and implementation of stabilization finite element methods for the resolution of the 3D time-dependent incompressible Navier-Stokes equations. The proposed method starts by the use of a finite element variational multiscale (VMS) method, which consists in here of a decomposition for both the velocity and the pressure fields into coarse/resolved scales and fine/unresolved scales. This choice of decomposition is shown to be favorable for simulating flows at high Reynolds number. We explore the behaviour and accuracy of the proposed approximation on three test cases. First, the lid-driven square cavity at Reynolds number up to 50,000 is compared with the highly resolved numerical simulations and second, the lid-driven cubic cavity up to Re = 12,000 is compared with the experimental data. Finally, we study the flow over a 2D backward-facing step at Re = 42,000. Results show that the present implementation is able to exhibit good stability and accuracy properties for high Reynolds number flows with unstructured meshes.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics

Software:

Cimlib
Full Text: DOI

References:

[1] Yang, H.; Chen, T.; Zhu, Z., Numerical study of forced turbulent heat convection in a straight square duct, International Journal of Heat and Mass Transfer, 52, 3128-3136 (2009) · Zbl 1167.80375
[2] Yagi, H.; Kawahara, M., Optimal shape determination of a body located in incompressible viscous fluid flow, Computer Methods in Applied Mechanics and Engineering, 196, 5084-5091 (2007) · Zbl 1173.76317
[3] Oñate, E.; Valls, A.; García, J., Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach, Journal of Computational Physics, 224, 1, 332-351 (2007) · Zbl 1116.76056
[4] E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.; E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.
[5] Franca, L.; Nesliturk, A., On a two-level finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Engineering, 52, 433-453 (2001) · Zbl 1002.76066
[6] A. Nesliturk, Approximating the incompressible Navier-Stokes equations using a two level finite element method, Ph.D. thesis, University of Colorado, 1999.; A. Nesliturk, Approximating the incompressible Navier-Stokes equations using a two level finite element method, Ph.D. thesis, University of Colorado, 1999.
[7] Arnold, D.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 23, 4, 337-344 (1984) · Zbl 0593.76039
[8] Canuto, C.; Van Kemenade, V., Bubble-stabilized spectral methods for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 135, 35-61 (1996) · Zbl 0894.76057
[9] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Mathematical Models and Methods in Applied Sciences, 4, 571-587 (1994) · Zbl 0819.65128
[10] Russo, A., Bubble stabilization of finite element methods for linearized incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 132, 335-343 (1996) · Zbl 0887.76038
[11] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, (Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New-York) · Zbl 1009.65067
[12] F. Brezzi, L. Franca, T. Hughes, A. Russo, Stabilization techniques and subgrid scales capturing, in: Conference of the State of the Art in Numerical Analysis, York, England, 1996.; F. Brezzi, L. Franca, T. Hughes, A. Russo, Stabilization techniques and subgrid scales capturing, in: Conference of the State of the Art in Numerical Analysis, York, England, 1996. · Zbl 0881.65100
[13] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, New-York, 2003.; J. Donea, A. Huerta, Finite Element Methods for Flow Problems, New-York, 2003.
[14] Hughes, T., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods, Computer Methods in Applied Mechanics and Engineering, 127, 387-401 (1995) · Zbl 0866.76044
[15] Brezzi, F.; Franca, L.; Hughes, T.; Russo, A., \(b = \int g\), Computer Methods in Applied Mechanics and Engineering, 145, 329-339 (1997) · Zbl 0904.76041
[16] Hughes, T. J.R.; Scovazzi, G.; Bochev, P. B.; Buffa, A., A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method, Computer Methods in Applied Mechanics and Engineering, 195, 19-22, 2761-2787 (2006) · Zbl 1124.76027
[17] Tezduyar, T.; Shih, R.; Mittal, S.; Ray, S., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, 95, 221-242 (1992) · Zbl 0756.76048
[18] Franca, L.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, 123, 229-308 (1995) · Zbl 1067.76567
[19] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, 190, 13-14, 1579-1599 (2000) · Zbl 0998.76047
[20] Codina, R., Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection, Computer Methods in Applied Mechanics and Engineering, 182, 3-4, 277-300 (2000) · Zbl 0986.76037
[21] Codina, R., Pressure stability in fractional step finite element methods for incompressible flows, Journal of Computational Physics, 170, 1, 112-140 (2001) · Zbl 1002.76063
[22] Codina, R.; Principe, J., Dynamic subscales in the finite element approximation of thermally coupled incompressible flows, International Journal for Numerical Methods in Fluids, 54, 707-730 (2007) · Zbl 1114.76041
[23] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, 196, 21-24, 2413-2430 (2007) · Zbl 1173.76335
[24] Gravemeier, V., Scale-separating operators for variational multiscale large eddy simulation of turbulent flows, Journal of Computational Physics, 212, 2, 400-435 (2006) · Zbl 1161.76494
[25] Gravemeier, V., A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation, Journal of Computational Physics, 218, 2, 677-701 (2006) · Zbl 1161.76495
[26] Gravemeier, V.; Gee, M. W.; Kronbichler, M.; Wall, W. A., An algebraic variational multiscale multigrid method for large eddy simulation of turbulent flow, Computer Methods in Applied Mechanics and Engineering, 199, 13-16, 853-864 (2010) · Zbl 1406.76027
[27] Brooks, A.; Hughes, T., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32, 199-259 (1982) · Zbl 0497.76041
[28] Hughes, T. J.R.; Feijoo, G. R.; Mazzei, L.; Quincy, J. N., The variational multiscale method a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, 166, 3-24 (1998) · Zbl 1017.65525
[29] Scovazzi, G., A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework, Computer Methods in Applied Mechanics and Engineering, 196, 4-6, 1108-1132 (2007) · Zbl 1120.76333
[30] Masud, A.; Khurram, R. A., A multiscale finite element method for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 195, 1750-1777 (2006) · Zbl 1178.76233
[31] Gravemeier, V.; Wall, W. A.; Ramm, E., A three-level finite element method for the instationary incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 193, 15-16, 1323-1366 (2004) · Zbl 1085.76038
[32] Hughes, T. J.R.; Mazzei, L.; Jansen, K., Large eddy simulation and the variational multiscale method, Computing and Visualization in Science, 3-47 (2000) · Zbl 0998.76040
[33] Hughes, T. J.R.; Oberai, A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Physics of Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237
[34] Hughes, T. J.R.; Mazzei, L.; Oberai, A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Physics of Fluids, 13, 505511 (2001) · Zbl 1184.76236
[35] Dubois, T.; Jauberteau, F.; Temam, R., Dynamic Multilevel Methods and the Numerical Simulation of Turbulence (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0948.76070
[36] O. Basset, Simulation numérique d’Écoulements multi-fluides sur grille de calcul, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2006.; O. Basset, Simulation numérique d’Écoulements multi-fluides sur grille de calcul, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2006.
[37] Wall, W. A.; Bischoff, M.; Ramm, E., A deformation dependent stabilization technique, exemplified by EAS elements at large strains, Computer Methods in Applied Mechanics and Engineering, 188, 4, 859-871 (2000) · Zbl 0983.74075
[38] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, 190, 3-4, 411-430 (2000) · Zbl 0973.76057
[39] Hughes, T. J.R.; Wells, G. N., Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 194, 9-11, 1141-1159 (2005) · Zbl 1091.76035
[40] Franca, L. P.; Oilveira, S. P., Pressure bubbles stabilization features in the Stokes problem, Computer Methods in Applied Mechanics and Engineering, 192, 1929-1937 (2003) · Zbl 1029.76032
[41] Behr, M. A.; Franca, L. P.; Tezduyar, T. E., Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, 104, 1, 31-48 (1993) · Zbl 0771.76033
[42] H. Digonnet, T. Coupez, Object-oriented programming for fast and easy development of parallel applications in forming processes simulation, in: Computational Fluid and Solid Mechanics 2003, 2003, pp. 1922-1924.; H. Digonnet, T. Coupez, Object-oriented programming for fast and easy development of parallel applications in forming processes simulation, in: Computational Fluid and Solid Mechanics 2003, 2003, pp. 1922-1924.
[43] Mesri, Y.; Digonnet, H.; Coupez, T., Advanced parallel computing in material forming with CIMLIB, European Journal of Computational Mechanics, 18, 7-8, 669-694 (2009) · Zbl 1278.74177
[44] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48, 3, 387-411 (1982) · Zbl 0511.76031
[45] Schreiber, R.; Keller, H. B., Driven cavity flows by efficient numerical techniques, Journal of Computational Physics, 49, 310-333 (1983) · Zbl 0503.76040
[46] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Computers and Fluids, 27, 4, 421-433 (1998) · Zbl 0964.76066
[47] Sahin, M.; Owens, R. G., A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I: high Reynolds number flow calculations, International Journal for Numerical Methods in Fluids, 42, 57-77 (2003) · Zbl 1078.76046
[48] Erturk, E.; Corke, T. C.; Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in Fluids, 48, 7, 747-774 (2005) · Zbl 1071.76038
[49] J.R. Koseff, R.L. Street, P.M. Gresho, C.D. Upson, J.A.C. Humphrey, J.W. To, A three-dimensional lid-driven cavity flow: experiment and simulation, in: Third International Conference on Numerical Methods in Laminar and Turbulent Flow, Seattle, WA, 1983, pp. 564-581.; J.R. Koseff, R.L. Street, P.M. Gresho, C.D. Upson, J.A.C. Humphrey, J.W. To, A three-dimensional lid-driven cavity flow: experiment and simulation, in: Third International Conference on Numerical Methods in Laminar and Turbulent Flow, Seattle, WA, 1983, pp. 564-581.
[50] Koseff, J. R.; Street, R. L., Visualization studies of a shear driven three-dimensional recirculating flow, Journal of Fluids Engineering, 106, 21-29 (1984)
[51] Freitas, C. J.; Street, R. L.; Findikakis, A. N.; Koseff, J. R., Numerical simulation of three dimensional flow in a cavity, International Journal for Numerical Methods in Fluids, 5, 561-575 (1985) · Zbl 0568.76040
[52] Freitas, C. J.; Street, R. L., Non-linear transport phenomena in a complex recirculating flow: a numerical investigation, International Journal for Numerical Methods in Fluids, 8, 769-802 (1988)
[53] Tang, L. Q.; Cheng, T.; Tsang, T. T.H., Transient solutions for three-dimensional lid-driven cavity flows by a least-squares finite element method, International Journal for Numerical Methods in Fluids, 21, 413-432 (1995) · Zbl 0846.76051
[54] Zang, Y.; Street, R. L.; Koseff, J. R., A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Physics of Fluids, A5, 3186-3196 (1993) · Zbl 0925.76242
[55] Prasad, A. K.; Koseff, J. R., Reynolds number and end-wall effects on a lid-driven cavity flow, Physics of Fluids, A1, 208-218 (1989)
[56] Popiolek, T. L.; Awruch, A. M.; Teixeira, P. R.F., Finite Element Analysis of Laminar and Turbulent Flows Using LES and Subgrid-Scale Models, Applied Mathematical Modelling, 30, 2, 177-199 (2006) · Zbl 1163.76383
[57] Lins, E. F.; Elias, R. N.; Guerra, G. M.; Rochinha, F. A.; Coutinho, A. L., Edge-based finite element implementation of the residual-based variational multiscale method, International Journal for Numerical Methods in Fluids, 61, 1-22 (2009) · Zbl 1170.76026
[58] Bouffanais, R.; Leriche, E.; Deville, M. O., Large-eddy simulation of the flow in a lid-driven cubical cavity, Physics of Fluids, 19, 5, 055108 (2007) · Zbl 1146.76333
[59] Yang, J. Y.; Yang, S. C.; Chen, Y. N.; Hsu, C. A., Implicit weighted ENO schemes for the three-dimensional incompressible Navier-Stokes equations, Journal of Computational Physics, 146, 1, 464-487 (1998) · Zbl 0931.76066
[60] Wong, K. L.; Baker, A. J., A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm, International Journal for Numerical Methods in Fluids, 38, 99-123 (2002) · Zbl 1009.76059
[61] Koseff, J. R.; Street, R. L., The lid-driven cavity flow: a synthesis of qualitative and quantitative observations, Journal of Fluids Engineering, 106, 390-398 (1984)
[62] Koseff, J. R.; Street, R. L., On end wall effects in a lid-driven cavity flow, Journal of Fluids Engineering, 106, 385-389 (1984)
[63] J. Kim, Investigation of separation and reattachment of turbulence shear layer: flow over a backward facing step, Ph.D. thesis, Stanford University, 1978.; J. Kim, Investigation of separation and reattachment of turbulence shear layer: flow over a backward facing step, Ph.D. thesis, Stanford University, 1978.
[64] Launder, B. E.; Spalding, D. B., The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 3, 2, 269-289 (1974) · Zbl 0277.76049
[65] L. Gaston, Simulation numTrique par TlTments finis bidimensionnels du remplissage de moules de fonderie et Ttude expTrimentale sur maquette hydraulique, Ph.D. thesis, Ecole Nationale SupTrieure des Mines de Paris, 1997.; L. Gaston, Simulation numTrique par TlTments finis bidimensionnels du remplissage de moules de fonderie et Ttude expTrimentale sur maquette hydraulique, Ph.D. thesis, Ecole Nationale SupTrieure des Mines de Paris, 1997.
[66] Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step, Journal of Fluid Mechanics, 330, 349-374 (1997) · Zbl 0900.76367
[67] H. Le, P. Moin, Direct numerical simulation of turbulent flow over a backward-facing step, Report TF-58, Stanford University, 1994.; H. Le, P. Moin, Direct numerical simulation of turbulent flow over a backward-facing step, Report TF-58, Stanford University, 1994. · Zbl 0900.76367
[68] W.F. Zhu, X.H. Wang, Large Eddy Simulation of Re’s Influence on the Quasi-Periodic Motions of the Turbulent Flow Over a Backward-Facing Step, New Trends in Fluid Mechanics Research ISBN 978-3-540-75994-2 (Springer Berlin Heidelberg), 2009, pp. 131-133.; W.F. Zhu, X.H. Wang, Large Eddy Simulation of Re’s Influence on the Quasi-Periodic Motions of the Turbulent Flow Over a Backward-Facing Step, New Trends in Fluid Mechanics Research ISBN 978-3-540-75994-2 (Springer Berlin Heidelberg), 2009, pp. 131-133.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.